
IMPROVED ALGORITHMS FOR VQ CODEWORD
SEARCH, CODEBOOK DESIGN AND CODEBOOK

INDEX ASSIGNMENT

Jenq-Shyang Pan

T
H

E

U N I V E R
S

I T
Y

O
F

E
D I N B U

R
G

H

A thesis submitted for the degree of
Doctor of Philosophy

to the Faculty of Science and Engineering of the University of Edinburgh
1996

Abstract

This thesis investigates efficient codeword search algorithms and efficient clustering algorithms
for vector quantization (VQ), improved codebook design algorithms and improved codebook
index assignment for noisy channels.

In the investigation of codeword search algorithms, several fast approaches are proposed, such
as the improved absolute error inequality criterion, improved algorithms for partial distortion
search, improved algorithms for extended partial distortion search and a fast approximate search
algorithm. The bound for the Minkowski metric is derived as the generalised form of the partial
distortion search algorithm,hypercube approach, absolute error inequality criterion and improved
absolute error inequality criterion. This bound provides a better criterion than the absolute
error inequality elimination rule on the Euclidean distortion measure. For the Minkowski
metric of order n, this bound contributes the elimination criterion from the L � metric to the Ln
metric. This bound is also extended to the bound for the quadratic metric by using methods of
metric transformation. The improved absolute error inequality criterion is also extended to the
generalised form of the mean-distance-ordered search algorithm for VQ image coding.

Several fast clustering algorithms for vector quantization based on the LBG algorithm are
presented. Genetic algorithms are applied to codebook design to derive improved codevectors.
The approach of stochastic relaxation is also applied to the mutation step of the genetic algorithm
to further improve the codebook design algorithm.

Vector quantization is very efficient for data compression of speech and images where the binary
indices of the optimally chosen codevectors are used. The effect of channel errors is to cause
errors in the received indices. A parallel genetic algorithm is applied to assign the codevector
indices for noisy channels so as to minimize the distortion due to bit errors. The novel property of
multiple global optima and the average distortion of the memoryless binary symmetric channel
for any bit error in the assignment of codebook index are also introduced.

ii

Declaration of Originality

This thesis and the work reported herein were composed and originated entirely by the author.

Jenq-Shyang Pan

iii

Acknowledgements

Firstly, I would like to thank my first supervisor, Professor Mervyn Jack for his supervision and
his support. I would also like to thank my second supervisor Dr. Fergus McInnes for the help in
solving many problems, debugging several programs and developing the bound for Minkowski
metric.

Thanks to Fabrizio Carraro, Dr. Go-An Rau and Dr. Mark Schmidt for introducing me many
facilities at University of Edinburgh and providing the speech and image data base. Thanks also
to Dr. Hsiao-Lan Fang, Dave Corne and Wei-Po Lee for introducing and discussing genetic
algorithms.

I would like to extend my thanks to many other colleagues and friends who have provided help
and advice during my PhD study. Without particular order, thanks to: Professor Sin-Horng
Chen, Professor Mingchuan Liang, Kuan-Chun Huang, Chang-Hui Shen, Yu-Tsui Lin, Jessica
Chen-Burger, Dr. Martine Grice, Professor Hsien-Tang Tsai, Professor J. D. Dai, Dr. Alan
Wrench, David Lin, Judy Chang and Kuo-Cheng Kuo.

Finally, I wish to thank my parents, my mother in law and my wife Shu-Chuan Chu for their
encouragement and support.

iv

Contents

List of figures ix

List of tables xii

1 Introduction 1
1.1 Importance of vector quantization � 1
1.2 Thesis structure � 3

2 Mathematics and Theory 7
2.1 Review of Probability and Stochastics Processes � � � � � � � � � � � � � � � � � 7

2.1.1 Theory of Probability � 7
2.1.2 Random Variable and Random Process � � � � � � � � � � � � � � � � � 10

2.2 Metrics and Distortion Measures � 10
2.2.1 Minkowski Metric � 11
2.2.2 Signal to Noise Ratio Measure � 12
2.2.3 Spectral Distortion Measure � 13
2.2.4 Cepstral Distortion Measure � 13
2.2.5 Quadratic Metric � 14
2.2.6 Itakura-Saito Distortion Measure � 14

2.3 Lagrange Multiplier Technique � 15
2.4 Theory of Vector Quantization � 15

2.4.1 Vector Quantizers � 17
2.4.2 Speech Coding and Image Coding � 18
2.4.3 Computational Complexity � 19

2.5 Hidden Markov Model � 19
2.6 Genetic Algorithms � 20

2.6.1 Initialization � 21
2.6.2 Selection � 21
2.6.3 Crossover � 22
2.6.4 Mutation � 25
2.6.5 Inversion � 26
2.6.6 Schema Theorem � 26

2.7 Parallel Processing � 28
2.8 Bound for Minkowski Metric � 29
2.9 Bound for Quadratic Metric � 32

2.9.1 Metric Transform Using Triangular Matrix � � � � � � � � � � � � � � � 32

v

2.9.2 Metric Transform Using KLT � 34

3 Efficient Codeword Search Algorithms 37
3.1 History of Codeword Search � 38

3.1.1 Partial Distortion Search � 38
3.1.2 Hypercube Approach � 39
3.1.3 Absolute Error Inequality Criterion � � � � � � � � � � � � � � � � � � � 39
3.1.4 Triangular Inequality Elimination � 40
3.1.5 Approximating and Eliminating Search Algorithm � � � � � � � � � � � 42
3.1.6 Minimax Method � 44
3.1.7 Previous Vector Candidate � 45
3.1.8 Subcodebook Search Algorithm � 45
3.1.9 Fast Sliding Search Algorithm � 47
3.1.10 Equal-average hyperplane partitioning method � � � � � � � � � � � � � 47
3.1.11 Fast Full Search Equivalent Encoding Algorithm � � � � � � � � � � � � 49
3.1.12 Adaptive Fast Encoding Algorithm � � � � � � � � � � � � � � � � � � � 50
3.1.13 Fast MMSE Encoding Technique � 51
3.1.14 Projection Method � 53

3.2 Improved Absolute Error Inequality Criterion � � � � � � � � � � � � � � � � � � 54
3.2.1 Fast Algorithms Using IAEI � 55
3.2.2 Minimax method with AEI approach � � � � � � � � � � � � � � � � � � 55
3.2.3 Experiments � 56

3.3 Improvement in Partial Distortion Search � 59
3.4 Improvement in Extended Partial Distortion Search � � � � � � � � � � � � � � � 63
3.5 Fast Algorithm for Approximate Search � 69
3.6 Efficient Search Algorithm for Image Coding � � � � � � � � � � � � � � � � � � 72
3.7 Fast Search Algorithm for Quadratic Metric � � � � � � � � � � � � � � � � � � � 76

4 Fast Clustering Algorithms 83
4.1 Introduction � 83
4.2 Experimental Materials � 85
4.3 LBG Algorithm � 85
4.4 Previous Vector Candidate and Previous Partitioned Centre � � � � � � � � � � � 86
4.5 Codebook Reorder Method � 86
4.6 Fast Clustering Algorithms � 87

4.6.1 APV-type clustering algorithm � 87
4.6.2 APC-type Clustering Algorithm � 88
4.6.3 APCH-type Clustering Algorithm � 89
4.6.4 IPC-type Clustering Algorithm � 90
4.6.5 TPC-type, ATPC-type and TPCR-type Clustering Algorithms � � � � � � 92

4.7 Experiments and Results � 92

5 Improved Algorithms for VQ Codebook Design 109
5.1 Introduction � 109

5.1.1 K-means and ISODATA Clustering Algorithms � � � � � � � � � � � � � 111
5.1.2 GLA Algorithm � 112
5.1.3 Pairwise Nearest Neighbour Algorithm � � � � � � � � � � � � � � � � � 113

vi

5.1.4 Simulated Annealing Method � 114
5.1.5 Stochastic Relaxation Approach � 116
5.1.6 Fuzzy C-means Clustering Algorithm � � � � � � � � � � � � � � � � � � 117
5.1.7 Path-following Approach � 118
5.1.8 Deviation Reduction Algorithm � 119

5.2 Codebook Design Using Genetic Algorithms � � � � � � � � � � � � � � � � � � 120
5.3 Experiments and Results � 126

6 Improved Algorithms for Codebook Index Assignment 134
6.1 Introduction � 134

6.1.1 Simulated Annealing for Optimization of Index Assignment � � � � � � 135
6.1.2 Pseudo-Gray Coding � 138
6.1.3 Channel Optimized Vector Quantization � � � � � � � � � � � � � � � � � 138

6.2 Average Distortion � 140
6.3 Multiple Global Optima � 141
6.4 Algorithm � 143
6.5 Experimental Results � 144

7 Summary and Conclusions 155
7.1 Summary � 155
7.2 Conclusions � 156

7.2.1 Efficient Codeword Search Algorithms � � � � � � � � � � � � � � � � � 156
7.2.2 Fast VQ Generation Algorithms � 159
7.2.3 Improved VQ Codebook Design Algorithms � � � � � � � � � � � � � � 160
7.2.4 New Discoveries of Codebook Index Assignment � � � � � � � � � � � � 160

7.3 Future Work � 161
7.3.1 Quadratic Metric � 161
7.3.2 Vector Quantization of Images � 162
7.3.3 Inequality for Codeword Search � 163
7.3.4 Codebook Design � 165

References 166

A Publications by the author 174

vii

List of figures

2.1 Vector quantization diagram � 16
2.2 Vector quantization encoder � 17
2.3 Task and data distribution of pipeline processing � � � � � � � � � � � � � � � � 28
2.4 Task and data distribution of data parallelism � � � � � � � � � � � � � � � � � � 29

3.1 Distortion diagram of test sample and codewords � � � � � � � � � � � � � � � � 41
3.2 Geometric diagram for Criteria 2 and 3 of triangular inequality elimination � � � 43
3.3 Diagram of four adjacent codewords for image coding � � � � � � � � � � � � � � 46
3.4 Search strategy of fast sliding search algorithm � � � � � � � � � � � � � � � � � 47
3.5 Experimental results for the elimination probability of IAEI at each feature

dimension (h is set to 1, 4, 9 and 13) � 81
3.6 Experimental results for the elimination probability of IAEI at each feature

dimension (h is set to i for the ith dimension) � � � � � � � � � � � � � � � � � � 82

4.1 Relationship between the number of codewords and the probability of the data
vectors belonging to the previous partitioned set � � � � � � � � � � � � � � � � � 99

4.2 The elimination probability of APC-type using AEI at each feature dimension � 100
4.3 The elimination probability of APCH-type at each feature dimension � � � � � � 101
4.4 The elimination probability of IPC-type using IAEI at each feature dimension � 102
4.5 Relationship between the number of codewords and the elimination probability

using TIE � 103
4.6 Comparison of elimination probability for 16 codewords � � � � � � � � � � � � 104
4.7 Saving in the number of multiplications at each iteration for 128 codewords � � 105
4.8 Saving in the number of multiplications at each iteration for 1024 codewords � � 106
4.9 Saving in the total number of mathematical operations at each iteration for 128

codewords � 107
4.10 Saving in the total number of mathematical operations at each iteration for 1024

codewords � 108

5.1 Flowchart of GA-GLA1 algorithm � 123
5.2 Flowchart of GA-GLA2 algorithm � 125
5.3 Coding String of Delport’s Algorithm � 126
5.4 Coding String of GA-GLA1 and GA-GLA2 Algorithms � � � � � � � � � � � � � 126
5.5 Mean squared error of GA-GLA1 algorithm for different population size � � � � 132
5.6 Mean squared error of GA-GLA1 algorithm for different number of generations 133

6.1 Block diagram of VQ communication system for noisy channel � � � � � � � � � 136

viii

6.2 Average distortion of parallel genetic algorithm in codebook index assignment
for different population size � 152

6.3 Average distortion of parallel genetic algorithm in codebook index assignment
for different bit error probability � 153

6.4 Average distortion of parallel genetic algorithm in codebook index assignment
for different number of groups � 154

ix

List of tables

3.1 Number of eliminations at each dimension (h is set to 1, 4, 9 and 13) � � � � � � 57
3.2 Number of eliminations at each dimension (h is set to i for the ith dimension) � 58
3.3 Computational complexity of codeword search for 8 codewords on Euclidean

metric � 59
3.4 Computational complexity of codeword search for 16 codewords on Euclidean

metric � 59
3.5 Computational complexity of codeword search for 32 codewords on Euclidean

metric � 59
3.6 Computational complexity of codeword search for 64 codewords on Euclidean

metric � 60
3.7 Computational complexity of codeword search for 128 codewords on Euclidean

metric � 60
3.8 Computational complexity of codeword search for 256 codewords on Euclidean

metric � 60
3.9 Computational complexity of codeword search for 512 codewords on Euclidean

metric � 61
3.10 Computational complexity of codeword search for 1024 codewords on Euclidean

metric � 61
3.11 Computational complexity for comparison inserted only in s =1, 4, 9 and 13 � � 61
3.12 The performance of DP in PDS, improved PDS and improved DPPDS (percent-

age improvement on standard PDS) � 63
3.13 Diagram of distortion calculation for EPDS in word recognition � � � � � � � � � 64
3.14 Diagram of distortion calculation for EPDS in vector encoding � � � � � � � � � 65
3.15 Cost intervals of 16 codewords and 128 codewords � � � � � � � � � � � � � � � 68
3.16 The performance of 16 codewords � 69
3.17 The performance of 128 codewords � 69
3.18 Performance comparison of minimax method and fast approximate algorithm

for 8 codewords � 71
3.19 Performance comparison of minimax method and fast approximate algorithm

for 256 codewords � 72
3.20 Performance comparison of minimax method and fast approximate algorithm

for 1024 codewords � 73
3.21 Performance comparison of MPS and New algorithm for 64 codewords, MSE=168 76
3.22 Performance comparison of MPS and New algorithm for 128 codewords, MSE=138 76
3.23 Performance comparison of MPS and New algorithm for 256 codewords, MSE=115 76
3.24 Performance comparison of MPS and New algorithm for 512 codewords, MSE=92 80
3.25 Performance comparison of MPS and New algorithm for 1024 codewords, MSE=85 80

x

3.26 Computational complexity of codeword search for 256 codewords on quadratic
metric � 80

3.27 Computational complexity of codeword search for 512 codewords on quadratic
metric � 80

3.28 Computational complexity of codeword search for 1024 codeword on quadratic
metric � 80

3.29 Computational complexity of modified method � � � � � � � � � � � � � � � � � 80

4.1 Computational complexity of VQ clustering for 8 codewords � � � � � � � � � � 95
4.2 Computational complexity of VQ clustering for 16 codewords � � � � � � � � � 95
4.3 Computational complexity of VQ clustering for 32 codewords � � � � � � � � � 96
4.4 Computational complexity of VQ clustering for 64 codewords � � � � � � � � � 96
4.5 Computational complexity of VQ clustering for 128 codewords � � � � � � � � � 97
4.6 Computational complexity of VQ clustering for 256 codewords � � � � � � � � � 97
4.7 Computational complexity of VQ clustering for 512 codewords � � � � � � � � � 98
4.8 Computational complexity of VQ clustering for 1024 codewords � � � � � � � � 98

5.1 Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 32
codewords � 128

5.2 Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 32
codewords � 129

5.3 Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 64
codewords � 129

5.4 Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 64
codewords � 130

5.5 Performance comparison of GA-GLA1, GA-GLA2 algorithms and GLA for 32
codewords � 130

5.6 Performance comparison of GA-GLA1, GA-GLA2 algorithms and GLA for 64
codewords � 130

5.7 Mean squared errors for ten runs of GA-GLA1, GA-GLA2 algorithms and
stochastic relaxation approach for 8 codewords � � � � � � � � � � � � � � � � � 131

6.1 Example of �� possibilities for qij, j = �� �� �, i = �� �� ���� � � � � � � � � � � � � 142
6.2 Example of �! possibilities for the permutation of bit strings b=(000, 001, 010,

011, 100, 101, 110, 111) � 142
6.3 Example of �! possibilities for the permutation of bit strings b=(001, 000, 011,

010, 101, 100, 111, 110) � 143
6.4 Performance (MSE) comparison of new algorithm, random assignment and worst

case (bit error rate: 0.01) � 147
6.5 Performance (MSE) comparison of new algorithm, random assignment and worst

case (bit error rate: 0.1) � 147
6.6 Mean squared errors for ten runs of the new algorithm and the worst case for 8

codewords (error bit rate: 0.01) � 147
6.7 Mean squared errors for ten runs of the new algorithm and the worst case for 16

codewords (error bit rate: 0.01) � 148
6.8 Mean squared errors for ten runs of the new algorithm and the worst case for 32

codewords (error bit rate: 0.01) � 148

xi

6.9 Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.01) � 149

6.10 Mean squared errors for ten runs of the new algorithm and the worst case for 8
codewords (error bit rate: 0.1) � 149

6.11 Mean squared errors for ten runs of the new algorithm and the worst case for 16
codewords (error bit rate: 0.1) � 150

6.12 Mean squared errors for ten runs of the new algorithm and the worst case for 32
codewords (error bit rate: 0.1) � 150

6.13 Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.1) � 151

xii

Chapter 1

Introduction

1.1 Importance of vector quantization

Communication by the socially rich medium of speech is one of the most important capabilities

possessed by human beings. The speech waveform conveys linguistic information, speaker’s

tone, speaker’s emotion and speaker’s state of health. Since the invention of the telephone by

Alexander Graham Bell, human beings have been able to exchange information via the telephone

without being face to face, communicating in real-time with one another in any place by using

mobile phones or any suitable communication tool. One of the major recent advances in such

remote speech communication is the development of speech coding techniques. In the area of

speech coding, vector quantization (VQ) (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al.,

1980) has been shown to be a popular and essential speech coding technique. Furthermore, vec-

tor quantization also plays an important role in image coding (Gersho & Gray, 1992; Kubrick

& Ellis, 1990; Ramamurthi & Gersho, 1986; Nasrabadi & King, 1988).

Human-machine (computer) communication by speech provides a convenient way to communi-

cate with machines. It reduces the amount of typing a human needs to undertake leaving hands

free and allowing access away from the terminal or screen. In addition the ears can be used as

well as the eyes. The machine needs to both recognize speech and respond with the results using

speech by employing speech recognition techniques and speech synthesis techniques. Although

the performance of current speech recognition systems remains imperfect, implementations of

efficient and accurate speech recognizers are in widespread use in many applications (Wilpon

& Roe, 1994; Nitta, 1994). The automatic speech entry of data or commands in manufacture

is popular and related applications include speech-based product inspection, inventory control

1

and material handling. Speech recognition is also applied to automatic transcription and aids for

the hearing impaired or physically disabled. The importance of vector quantization in speech

recognition is reported in many papers (Rabiner & Juang, 1993; Deller et al., 1993). The

hidden Markov model (HMM) (Huang et al., 1990; Rabiner & Juang, 1986; Huang, 1992) has

been shown to be a promising method in speech recognition which relies on the preprocessing

stage of vector quantization for discrete or semi-continuous HMM-based recognition. In speech

synthesis, vector quantization is also useful for pattern matching to reduce data storage.

Automatic speaker recognition (Forsyth, 1995) involves identifying people from their voices

completely automatically. Speaker recognition can be separated into two categories: speaker

verification and speaker identification. Both categories use similar techniques to speech recogni-

tion, such as dynamic time warping (DTW) (McInnes & Jack, 1988; Rabiner et al., 1978) vector

quantization, hidden Markov models and neural networks (NN) (Lippmann, 1987; Wu & Chan,

1993; Farrell et al., 1994). Vector quantization can be seen as the preprocess of DTW, HMM

and NN. Vector quantization is also a key element in speaker recognition. Vector quantization is

therefore a most fundamental and important technique in speech coding, image coding, speech

recognition, speech synthesis and speaker recognition.

Vector quantization has been widely used in various applications as described above. An ordered

set of signal samples or parameters can be efficiently coded by matching the input vector to a

similar pattern or codevector (codeword) in a predefined codebook. For any given input data

vector, the encoder assigns one index to the data vector in which the index is the address of the

best matching codevector. In the data compression of speech coding or image coding, the index

is transmitted and the decoder replicates the corresponding codevector by a table lookup from

a copy of the same codebook. The response time of encoding is a very important factor to be

considered for real-time transmission (Cheng et al., 1984; Cheng & Gersho, 1986; Ramasubra-

manian & Paliwal, 1990; Vidal, 1986; Soleymani & Morgera, 1987b; Ra & Kim, 1993). In this

thesis, improvements in the partial distortion search (PDS) algorithm and the extended partial

distortion search (EPDS) algorithm are presented. These improve the performance of the partial

distortion search method (Bei & Gray, 1985). The bounds for the Minkowski metric and the

quadratic metric are derived and applied to codeword search problems to improve the efficiency

for the Minkowski distortion measure and the Mahalanobis distortion measure. An improved

2

fast mean-distance-ordered partial codebook search algorithm for image vector quantization is

also reported together with several efficient approaches for training VQ codebooks.

In the application of vector quantization to waveform coding or recognition, the performance

depends on the existence of a good codebook of representative vectors. A novel VQ codebook

design algorithm using genetic algorithms (GA) (Goldberg, 1989; Davis, 1991) is proposed.

This approach provides superior performance compared with the generalized Lloyd algorithm

(GLA) (Linde et al., 1980).

A very important problem in quantization theory is how to effectively overcome the performance

degradation caused by noisy channels. One possible approach is to use redundant parity bits

for error control coding. In this thesis, a parallel genetic algorithm (PGA) (Cohoon et al.,

1987; Pettey et al., 1987; Shonkwiler, 1993) is applied to assign the codevector indices for noisy

channels so as to minimize the distortion due to bit errors without adding any redundant bit.

1.2 Thesis structure

There are five main chapters in this thesis. Chapter 2 introduces the mathematics and theory

essential for the reader. It includes a review of probability and stochastic processes, distortion

measures, the Lagrange multiplier technique, theory of vector quantization, hidden Markov

models, genetic algorithms and parallel processing. In Chapter 2 a new approach to deriving

bounds for the Minkowski metric based on the Lagrange multiplier technique is highlighted.

The bound for the Minkowski metric is shown to be a general form of the hypercube approach,

the partial distortion search (PDS) algorithm, the absolute error inequality criterion (AEI) and

the improved absolute error inequality criterion (IAEI). The improved absolute error inequality

criterion is a new criterion presented in this thesis, being derived from this bound. It is shown to

provide a better criterion than the absolute error inequality criterion on the Euclidean distortion

measure. For the Minkowski metric of order n, this bound contributes the elimination criterion

from the L� metric to the Ln metric. The bound for the Minkowski metric is also extended

to the bounds for the quadratic metric by using the methods of the Triangular Matrix and the

Karhunen-Loêve transform (KLT). The bounds for the quadratic metric can be applied to any

codeword search in which the distortion measure is quadratic. One of the main contributions

3

in this thesis is the derivation of the bound for the Minkowski metric and the bounds for the

quadratic metric.

Chapter 3 reviews the history of many fast codeword search algorithms and introduces key ele-

ments of codeword search algorithms. A range of new and efficient codeword search algorithms

are presented in this chapter. The processors can be separated into two classes, i.e., general

processors and DSP processors. For general processors, such as Intel 80486, Intel Pentium and

Motorola 680x0, the operation of multiplication is more expensive than the operation of addition

and comparison. For DSP processors, such as the TMS320 series of processors, the operation

of comparison is computationally expensive. The novel partial distortion search algorithm is

shown to be very suitable for use with general processors and is less suited to DSP processors.

By considering the cost ratio of the comparison computation time to dimension-distortion com-

putation time, an improved PDS algorithm and a new and improved DPPDS algorithm are also

proposed here to enhance the performance of the partial distortion search algorithm which is in

fact suitable for any processor. The extended partial distortion search (EPDS) algorithm is a

modified version of the partial distortion search (PDS) algorithm and is an optimal PDS in the

sense of reducing the number of multiplications. The EPDS algorithm is however, only suitable

for general processors. An improved EPDS algorithm based on available computer architecture

is derived in this chapter. By considering the cost ratio of the sorting time to dimension-distortion

computation time of a given processor, the optimal inserting point of the sorting can be predicted

from the derived equations. This improves the performance of the EPDS algorithm.

The improved absolute error inequality criterion (IAEI) is a special case of the bound for the

Minkowski metric. It is the most efficient criterion for reducing the number of multiplications

for the full search algorithm based on a Euclidean distortion measure. An efficient algorithm is

proposed in Chapter 3, combining the IAEI criterion with the minimax method. Comparison

of this new and efficient algorithm with the minimax method, demonstrates a reduction in the

number of multiplications by more than 77% and with a slight reduction in the total number of

mathematical operations for 1024 codewords. Since the absolute error inequality has already

been shown to be the most efficient criterion in reducing the number of multiplications (Huang

et al., 1992; Soleymani & Morgera, 1987b; Soleymani & Morgera, 1989), experiments are

also reported in Chapter 3 to demonstrate that the IAEI criterion can reduce the number of

4

multiplications by more than 21% and better than 3% for the total number of mathematical

operations compared with the AEI criterion. Also, Chapter 3 shows that (in theory) the IAEI

provides a tighter bound than the AEI criterion. A new fast algorithm for approximate search

is also presented in this chapter and the IAEI criterion is also extended to the generalised form

of the mean-distance-ordered partial codebook search (MPS) algorithm (Ra & Kim, 1993) for

image coding. The improved mean-distance-ordered partial codebook search (IMPS) algorithm

is developed by employing this generalised formula. The drawback of the MPS algorithm is

addressed and the IMPS algorithm is shown to overcome this drawback. In codeword search

experiments, without applying the PDS algorithm both in the IMPS algorithm and the MPS

algorithm, the IMPS algorithm is shown to reduce the computation time by more than 43%

compared with the MPS algorithm for 1024 codewords. The IMPS algorithm is also shown to

reduce the number of multiplications by more than 27% and reduce the total number of math-

ematical operations about 15% for 1024 codewords for applying the partial distortion search

algorithm both in the IMPS algorithm and the MPS algorithm.

Several fast clustering algorithms for vector quantization are introduced in Chapter 4 and two

tentative match approaches (previous vector candidate and previous partitioned centre) are used

in the experiments. The triangular inequality elimination (TIE) and the codebook reorder method

are introduced in this chapter. Many combinations of the improved absolute error inequality

criterion, absolute error inequality criterion, hypercube approach, partial distortion search, tri-

angular inequality elimination criteria and codebook reorder method to produce fast clustering

algorithms are presented here. Among these approaches, the most efficient algorithm for general

processors is the IPC-type clustering algorithm which is a combination of the previous parti-

tioned centre, the IAEI criterion and the PDS algorithm. For DSP processors, the TPC-type

clustering algorithm which is the combination of a previous partitioned centre, triangular in-

equality elimination (TIE) and PDS algorithm, outperforms the other algorithms.

Chapter 5 reviews several codebook design algorithms. The K-means algorithm, ISODATA

clustering algorithm, GLA, pairwise nearest neighbour algorithm, fuzzy C-means clustering

algorithm, deviation reduction algorithm, codebook design by stochastic relaxation, codebook

generation using simulated annealing method and vector quantizer design using path-following

are discussed in this chapter. Finally, a novel codebook design approach based on genetic al-

5

gorithms is proposed. This algorithm is the combination of genetic algorithms and GLA which

is called GA-GLA algorithm. An improved version of GA-GLA is also presented by inserting

the stochastic relaxation method in the mutation step. Experimental results demonstrate that the

GA-GLA algorithms are significantly better than the GLA algorithm.

Chapter 6 introduces the importance of codevector index assignment for noisy channels. The

property of multiple global optima and the average distortion of the memoryless binary sym-

metric channel for any bit error are demonstrated. The ensemble average distortion for any bit

error in the memoryless binary symmetric channel is derived for the first time in this thesis and

the property of multiple global optima is also reported here for the first time. The property of

multiple global optima can be used to reduce the search space for codebook index assignment in

noisy channels. A new (good) codevector index assignment based on parallel genetic algorithm

is presented. It is further shown that applying the parallel genetic algorithm in the codebook

index assignment, not only speeds up the computation time but also generates better results.

The proposed use of genetic algorithms for codebook index assignment for noisy channels is

suggested in this thesis for the first time.

The final chapter summarizes the important discoveries and conclusions of this thesis. Several

possible methods for future work are also addressed in this chapter.

6

Chapter 2

Mathematics and Theory

2.1 Review of Probability and Stochastics Processes

2.1.1 Theory of Probability

Probability is a set function P that assigns to each event E in the sample space Ω a number P(E),

called a probability of event E, such that the following properties are satisfied:

1. Probabilities are non-negative, P(E) � �.

2. The probability of the entire space Ω is 1, P(Ω) = �.

3. The probability of the union of the mutually exclusive events E i, i = �� �� ����M is the sum

of the probabilities of the individual events, i.e., P(E��E� � ���EM) = P(E�) +P(E�) + ���+

P(EM), where mutually exclusive means Ei � Ej = 	 for any i �= j.

A probability measure P can also be defined in terms of a real valued function f defined on R

with the following properties:

1. f(x) � �, x
 R.

2.
R�
�� f(x)dx = �.

3. P(F) =
R
F
f(x)dx, F is an event.

The function f is called a probabilitydensity function (pdf). Some of the more commonly

used pdf’s on R are listed below.

7

1. Gaussian pdf:

f(x) =
�p
����

e�
(x��)�

��� � (���)

where
 is the mean of x and � is the standard deviation.

2. Uniform pdf:

f(x) =

�����
����

�
b�a � a � x � b

�� otherwise

(���)

where b � a.

3. Exponential pdf:

f(x) =
�

�
e�

x
� � (���)

where � � �.

4. Laplacian (doubly exponential) pdf:

f(x) =
�p
���

e�
p
�jxj
� � (���)

where � is the standard deviation of x.

If the sample space Ω is a discrete set of real numbers, then a function p can be defined for all

points in Ω which has the following properties:

�� p(x) � �� x
Ω�

��
X
x�Ω

p(x) = ��

�� P(F) =
X
x�F�Ω

p(x)�

The function p is called a probability mass function (pmf). Some of the more commonly

used pmf’s are listed below.

8

1. Binary pmf:

p(�) = q� p(�) = �� q�Ω = f�� �g� (���)

2. Uniform pmf:

p(x) =
�

n
� x
Ω = f�� �� ���� n� �g� (���)

3. Geometric pmf:

p(x) = (�� q)qx� x
Ω = f�� �� ���g� (���)

where q is a real number in [0,1].

4. Poisson pmf:

p(x) =
�xe��

x!
� x
Ω = f�� �� ���g� (���)

where � is a positive real number.

Given a probability function P or the probability density function f, the cumulative

distribution function (cdf) F(r) is defined by

F(r) = P(xjx � r)� for discrete sample space (���)

or

F(r) =
Z r
��

f(x)dx� for continuous sample space� (����)

This implies that

f(r) =
dF(r)
dr

� (����)

9

2.1.2 Random Variable and Random Process

A (real) random variable X is a mapping from the sample space into the real number line: X :

Ω � R, i.e., X assigns a real number to every point in the sample space. If a random variable X

is discrete and its allowable values are x�� x�� ���� xn, then the probability of the discrete random

variable taking the value xi is denoted as p(X = xi). The sum of the probability over all values

of the random variable is

nX
i=�

p(X = xi) = �� (����)

If X is a continuous random variable, then the probability of the continuous random variable

taking the value x is denoted as fX(x). The integral of the probability over all values of the

random variable is

Z�
��

fX(x)dx = �� (����)

A random vector is a vector whose components include multiple random variables, i.e., a random

vector is a finite collection of random variables. A random vector is said to be independent and

identically distributed (iid) if it has independent components with identical marginals, i.e., the

corresponding probability functions are identical. A random process is an indexed family of

random variables fXt; t
Tg. The index t corresponds to time. If T is continuous, then the

process is called a continuous time random process. If T is discrete, then the process is called a

discrete time random process or a random sequence. A discrete time random process is said to

be independent and identically distributed (iid) if the random variables produced by the process

are independent and have identical distributions.

2.2 Metrics and Distortion Measures

A key component of pattern matching is the measurement of dissimilarity between two feature

vectors. Assume X, Y and Z are three vectors in a multidimensional space. Without loss of

10

generality, k-dimensional real Cartesian space denoted Rk is used as the collection of all

k-dimensional vectors with real elements. On Rk, a metric D is a real-valued function which

fulfils the following three metric properties:

1. Positive definiteness property

� � D(X� Y) �� for X� Y
Rk� (����)

and D(X� Y) = � iff X = Y� (����)

2. Symmetry property

D(X� Y) = D(Y� X) for X� Y
Rk� (����)

3. Triangular inequality property

D(X� Y)� D(X� Z) + D(Y�Z) for X� Y�Z
Rk� (����)

If the measurement of dissimilarity satisfies only the positive definiteness property, it is called

the distortion measure, such as the Itakura distortion measure and the likelihood distortion

measure (or the Itakura-Saito distortion family) (Rabiner & Juang, 1993). Each metric has its

own advantages and drawbacks. Three main characteristics (Devijver & Kittler, 1982) of the

metric are computational complexity, analytical tractability and feature evaluation reliability.

The choice of a particular metric depends on the actual application.

2.2.1 Minkowski Metric

Most of the metrics used in speech and image processing are special cases of the Minkowski

metric. Let xi denote the ith component of the k-dimensional vector X. The Minkowski metric

of order p (Deller et al., 1993), or the Lp metric, between vectors X and Y can be expressed as

11

Dp(X� Y) = p

vuut
kX
i=�

jxi � yijp� (����)

where X = fx�� x�� ���� xkg and Y = fy�� y�� ���� ykg.

Three special cases are as follows:

1. L� or city block metric

D�(X� Y) =
kX
i=�

jxi � yij� (����)

2. L� or Euclidean metric

D�(X� Y) =

vuut
kX
i=�

jxi � yij�� (����)

3. L� or Manhattan (Chebyshev) metric

D�(X� Y) = maxijxi � yij� (����)

In the codeword search problem, usually the Euclidean metric is used because it fits the physical

meaning of distance (or distortion). In order to avoid calculating the division, the squared

Euclidean metric is employed instead of the Euclidean metric in pattern matching. This does

not affect the result by deleting the square root from the Euclidean metric. Several researchers

(Soleymani & Morgera, 1989; Lo & Cham, 1993; Mathews, 1992) also call the squared Euclidean

metric as simply the Euclidean metric. For convenience and without causing confusion, the

Euclidean metric is also used without the square root in this thesis.

2.2.2 Signal to Noise Ratio Measure

The signal to noise ratio (SNR) (Kitawaki, 1991) measure is appropriate for speech waveform

coding. It is one of the common objective measures defined as

12

SNR = ��log��

Pm

j=� x
j�

Pm

j=� jxj � x̂jj� � (����)

Here, xj is an undistorted input speech signal, x̂j is the distorted output speech signal of waveform

coding and m is the number of samples in the speech signal. This measure is also suitable for

image coding. Generally, the SNR measure characterizes the ratio of long-term average speech

power to long-term average quantizing noise power. The larger-power speech section dominates

the long-term calculation of SNR measure. Hence, a smaller-power speech section is neglected,

in spite of its importance, such as for consonant or transient periods. This measure can be

improved by separating the speech waveform into several frames, taking the same measure over

each frame and summing the measurement for all frames. It is named segmental SNR (SNRseg)

which is defined as

SNRseg =
�

N

NX
i=�

SNRi� (����)

where N is the number of frames and SNRi is the SNR of the ith frame. The typical duration

of the frame is 20 ms for speech segments.

2.2.3 Spectral Distortion Measure

The spectral distortion measure (SD) is an objective measure containing the characteristics of

the whole speech spectrum and is defined as

SD = [
�

b

Z b
�

fSx(b) � Sy(b)g�db]���� (����)

where Sx and Sy are input and output speech spectra, respectively, and b is the frequency band

of the signal. The speech spectrum can be computed from the fast Fourier transform (FFT).

2.2.4 Cepstral Distortion Measure

The cepstrum (Rabiner & Juang, 1993) of a signal is defined as the Fourier transform of the log

of the signal spectrum. Given two cepstrum coefficients Ct and Cr in the k-dimensional vector

space, the cepstral distortion between Ct and Cr is expressed as

13

Dc(Ct� Cr) =
kX
i=�

jcit � cirj�� (����)

2.2.5 Quadratic Metric

The quadratic metric is an important generalization of the Euclidean metric. Let Q denote

the positive definite matrix, such as the inverse of the covariance matrix, the quadratic metric

between vectors X and Y is defined as follows:

Dq(X� Y) = (X � Y)tQ(X� Y)� (����)

One particular case of the quadratic metric is the weighted cepstral distortion measure (Tohkura,

1987). It is defined as

Dw(Ct� Cr) =
kX
i=�

wijcit � cirj�� (����)

where wi is the reciprocal of the ith diagonal element of the covariance matrix of the feature

vectors. The most significant characteristic of the weighted cepstral distortion is that it equalizes

the importance in each dimension of cepstrum coefficients. In the speech recognition, the

weighted cepstral distortion can be used to equalize the performance of the recognizer across

different talkers (Pan, 1988).

2.2.6 Itakura-Saito Distortion Measure

The Itakura-Saito distortion measure (O’Shaughnessy, 1987; Rabiner & Juang, 1993; Itakura &

Saito, 1970) computes a distortion between two input vectors by using their spectral densities.

The definition of this measure is as follows:

Dis(X� Y) = jSx
Sy
� ln(

Sx

Sy
)� �j� (����)

where Sx and Sy are the spectral densities of the vectors X and Y.

14

2.3 Lagrange Multiplier Technique

The Lagrange multiplier technique is an efficient method for finding the minimum or

maximum values of a function g(x� y� z) subject to a constraint condition �(x� y� z) = �. It

is expressed with the formation of the auxiliary function

f(x� y� z� �) = g(x� y� z) + ��(x� y� z)� (����)

subject to the conditions

�f

�x
= ��

�f

�y
= ��

�f

�z
= �� (����)

which are necessary conditions for a relative minimum or maximum value and the parameter �

is independent of x, y, and z.

This technique can be generalized to find the minimum or maximum values of a function

g(x�� x�� ���� xn) subject to the constraint conditions��(x�� x�� ���� xn) = �,��(x�� x�� ���� xn) =

�, ..., �m(x�� x�� ���� xn) = �. The auxiliary function is

f(x�� x�� ���� xn� �) = g + ���� + ���� + ��� + �m�m (����)

subject to the necessary conditions

�f

�x�
= ��

�f

�x�
= �� ��� �

�f

�xm
= �� (����)

where �i, i = �� �� ����m, is independent of xj, j = �� �� ���� n.

2.4 Theory of Vector Quantization

A fundamental purpose of data compression, such as image coding or speech coding, is to

reduce the bit rate for transmission or data storage while maintaining the necessary fidelity of

the data. One of the simple and essential examples of data compression is the transmission of

speech by pulse code modulation (PCM) in which a sampler followed by scalar quantization

is used to compress the speech data. According to Shannon’s rate-distortion theory, improved

15

performance is always achievable in theory by coding vectors instead of scalars, even if the data

source is memoryless. A vector can be used to represent almost any type of pattern, such as a

block of image data by forming the vector which is composed of the values of the pixels in the

block; or a segment of speech waveform by forming the vector from the values of the sample

points in the segment. The vector may represent a number of different possible speech coding

parameters including linear predictive coding (LPC) coefficients, cepstrum coefficients, gain

parameters and prediction residual samples. It is also possible to represent the parameters in

image coding, such as coefficients of the discrete cosine transform (DCT) or the Walsh-Hadamard

transform. Vector quantization can be viewed as a generalization of scalar quantization to

the quantization of a vector, an ordered set of real numbers. Fig. 2.1 illustrates the basic

Encoder Decoder

Index

Nearest

Neighbour

Search
Lookup

Table

Codevectors Codevectors

Vector

Input Output

Vector

Figure 2.1: Vector quantization diagram

idea of vector quantization (Gersho & Gray, 1992; Gray, 1984; Gersho & Cuperman, 1983;

Nasrabadi & King, 1988). The VQ encoder encodes a given set of k-dimensional data vectors

X=fXjjXj 	 Rk; j = �� ���� Tgwith a much smaller subsetC=fCijCi 	 Rk; i = �� ���� Ng(N
 T).

The subset C is called a codebook and its elements Ci are called codewords, codevectors,

reproducing vectors, prototypes or design samples. Only the index i is transmitted to the

decoder. The decoder has the same codebook as the encoder, and decoding is operated by

table look-up procedure. The performance of data compression depends on creation of a good

codebook of representative vectors.

16

2.4.1 Vector Quantizers

Codevectors

Cp , P = 1, 2, . . . , N

Index Ij = i

Ij = iXj
i = arg Min D(Xj , Cp)

p

Figure 2.2: Vector quantization encoder

As shown in Fig. 2.2, the index Ij of the jth data vector is i which is transmitted to the receiver

if the codeword Ci is the nearest neighbour to the data vector Xj. This class of vector quantizers

called Voronoi or nearest neighbour vector quantizer is particularly useful. The nearest

neighbour encoding algorithm is described as follows:

Step 1: Set dmin = �, p = 1, i = 1.

Step 2: Calculate dp = D(Xj� Cp).

Step 3: If dp < dmin, set dmin = dp and i = p.

Step 4: If p < N, set p = p + 1 and go to step 2.

Step 5: Terminate the search program and record the search index i.

The initial value dmin = � means that the initial dmin is larger than any possible distortion

in the decoding approach. The LBG algorithm (Linde et al., 1980) is a popular VQ training

algorithm which was proposed by Linde, Buzo and Gray and their names are used to refer to

this algorithm. LBG based vector quantizer belongs to the class of nearest neighbour quantizer.

A lattice vector quantizer (Conway & Sloane, 1983; Jeong & Gibson, 1989; Gersho & Gray,

1992) is a different class of vector quantizers whose codebook is either a lattice or a coset of a

17

lattice or a truncated version of a lattice or its coset so that the codebook size is finite. The lattice

based vector quantizer provides design simplicity, reduces encoding complexity and yields high

quantization performance especially for large codebook size.

The performance of the vector quantizer can be evaluated by a distortion measure D which is a

non-negative cost D(Xj� X̂j) associated with quantizing any input vector Xj with a reproduction

vector X̂j. Usually, the Euclidean distortion measure is used. The performance of a quantizer

is always qualified by an average distortion Dv = E[D(Xj� X̂j)] between the input vectors and

the final reproduction vectors, where E represents the expectation operator. Normally, the

performance of the quantizer will be good if the average distortion is small. If the data vector

process is stationary and ergodic, then the overall measure of performance can be expressed as

the long term sample average or time average

D = lim
n��

�

n

nX
j=�

D(Xj � X̂j) � �

T

TX
j=�

D(Xj � X̂j)� (����)

where T is the number of data vectors and it is large enough to qualify the performance.

2.4.2 Speech Coding and Image Coding

The most simple and original application of vector quantization to speech coding is to perform

block waveform coding called vector pulse code modulation (VPCM) (Gersho & Cuperman,

1983; Abut et al., 1982) on the speech signal vector. Vector quantization has been applied

to the efficient coding of linear predictive coding (LPC) parameters (Kang & Coulter, 1976;

Buzo et al., 1980; Wong et al., 1982), parameters of pitch predictor, gain parameters (Chen &

Gersho, 1987; Sabin & Gray, 1984), the coding of the excitation or residual signal in analysis-

by-synthesis predictive coding techniques, such as vector excitation coding (VXC) (or code

excited linear prediction (CELP)) (Davidson et al., 1987; Atal & Schroeder, 1985; Ahmed &

Al-Suwaiyel, 1993; Cuperman et al., 1991).

The application of vector quantization on digital images has been investigated in the spatial

domain, such as the mean�shape VQ (Budge & Baker, 1985), the classified VQ (Gersho

& Ramamurthi, 1982; Ramamurthi & Gersho, 1986) codebook replenishment VQ (Sun &

Goldberg, 1985), hierarchical VQ (Nasrabadi, 1985) and the interframe VQ (Goldberg

18

& Sun, 1986). The goal of transform coding for digital images is to convert statistically

dependent or correlated picture elements into independent or uncorrelated coefficients. In the

transform domain, vector quantization has been applied to the coding of adaptive transform

(Saito et al., 1986), one � dimensional transform (Nasrabadi & King, 1983), two �
dimensional transform (Habibi, 1974) and interframe transform (Nasrabadi & King,

1984).

2.4.3 Computational Complexity

In the VQ coding area, fidelity increases with the transmission rate r (bits per vector dimension).

For a fixed transmission rate r and vector dimension k, the size of a VQ codebook N is �kr. The

search complexity to find a nearest codeword for a given input data vector is O(k�kr), i.e., k�kr

multiplications, (�k� �)�kr additions and �kr� � comparisons for exhaustive full search (EFS).

The search complexity increases exponentially as the vector dimension grows. This is one major

drawback of VQ codeword search and it limits the fidelity of coding for real time transmission.

In order to reduce the computational cost, two general approaches have been reported. The first

proposes fast search algorithms for searching the same codebook (Cheng et al., 1984; Cheng

& Gersho, 1986; Ra & Kim, 1991; Huang & Chen, 1990; Lo & Cham, 1993; Soleymani &

Morgera, 1987a). The other reported techniques use structured codebook (Juang & Gray, 1982;

Lowry et al., 1987; Moayeri et al., 1991; Mohammadi & Holmes, 1994) to achieve efficient

codeword search.

2.5 Hidden Markov Model

Signal modelling based on hidden Markov models (HMM) may be considered as a technique

that extends conventional stationary spectral analysis principles to the analysis of time-varying

signals. Hidden Markov model theory (Forsyth, 1995; Huang et al., 1990; Rabiner & Juang,

1986) has been applied successfully in speech and speaker recognition. The principle of the

hidden Markov model is to provide a probabilistic framework for VQ codewords for modelling

temporal and contextual information. It is a collection of states connected by transitions which

include a set of state transition probabilities and a set of output probability mass functions.

The state transition probability is the probability of a state transition occurring. The output

19

probability mass function defines the conditional probability of each possible output symbol

from a finite alphabet given a state.

In the training phase, the forward�backward algorithm and Baum�Welch re-estimation

algorithm are generally used to train the sets of state transition probabilities and output probability

density functions. In the recognition phase, the Viterbi dynamic programming algorithm can

be used to find the optimal assignment of frames to the states, based on maximising the total

probability. There are four main categories in hidden Markov models: discrete hidden Markov

model (DHMM), continuous hidden Markov model (CHMM), semi�continuous hidden

Markov model (SCHMM) and Multi-VQ hidden Markov model (MVQHMM). In DHMM,

VQcodewords are assigned probabilities and the probability of the codeword which is nearest to

the feature vector is used as the observation probability. These VQ codewords are shared for all

states of all models. InCHMM, each state of each model has differentmixtureGaussianVQ

functions. If the training data is inadequate, it is difficult to use the parameters of theGaussians

to estimate each state of each model. SCHMM overcomes this difficulty by having a fixed set

of Gaussians in a codebook that are shared for all states of all models. MVQHMM is an

approach to fill the gap between the SCHMM and CHMM by having different Gaussian

codebooks for different models.

2.6 Genetic Algorithms

Genetic algorithms (GA) (Fang, 1994) are a group of methods which solve problems using

approaches inspired by the processes of Darwinian evolution. The current genetic algorithms

in science and engineering refer to a model introduced and investigated by Holland (Holland,

1975) and by students of Holland. In genetic algorithms, a set of solutions to a problem is called

chromosomes. A chromosome (string of solution) is composed of genes (features, characters

or detectors). Usually, the individual of the whole population contains only one chromosome.

The performance of the solution is called fitness. The fitness of chromosomes are evaluated and

ordered, then new chromosomes are produced by using the selected candidates as parents and

applyingmutation and crossover operations. The new set of chromosomes is then evaluated

and ordered again. This cycle continues until a suitable solution is found. The conventional

20

genetic algorithm is described as the following steps:

Step 1. Initialization: Encode and assign a chromosome to each individual in the population.

Step 2. Evaluation: Decode and evaluate each chromosome’s fitness.

Step 3. Selection: Select the survivors for the next generation from the better fitness of

chromosomes. These survivors will be the candidate for the crossover and mutation

operation.

Step 4. Crossover: Pairs of survivors are selected as the parents to crossover to produce new

chromosomes (children) for the next generation.

Step 5. Mutation: Mutation is operated among genes in chromosomes randomly.

Step 6. Steps 2 to 5 are repeated until adequate fitness is found.

2.6.1 Initialization

A set of chromosomes is randomly generated. For example, if the problem is to minimize a

function of a, b, c and d, then the initial step may be to generate a collection of random vectors

(ai� bi� ci� di), i = �� �� ���� P, P is the number of chromosomes or population size. The gene

in the chromosome can be binary or non-binary. The length of the chromosome (string) or

the number of genes in the chromosome can be fixed or variable. The representation of the

chromosome plays an important role in genetic algorithms.

2.6.2 Selection

The goal of selection is to choose the better individuals as the survivors which are then used as the

parents and undergo subsequent crossover and mutation operations. Without the selection step,

the crossover and mutation operations are useless, i.e., no better offspring could be generated in

the next generation. The probability of each parent being selected is the function of its fitness.

Even only keeping the best individual as the survivor, with the other survivors selected randomly,

and the parents selected from the survivors, the GA can perform well.

21

Roulette Wheel Selection

Roulette Wheel selection (Goldberg, 1989) or fitness-based selection is the original approach

for parent selection. In Roulette Wheel selection, the probability of selection for each parent

is directly proportional to its fitness. The performance of this selection depends strongly on

the range of fitness values in the current population. For example, if the population size is 5

and the fitness values are 1, 10, 100, 500 and 1000, then the probability of selecting the first

individual is �

����
. There is almost no chance to select the parent whose fitness is relatively low

compared with the individual with highest fitness, even if the individual with lower fitness has

some important genes. So a few individuals dominate the selection. Another example is where

the range of fitness is very narrow, such as 1000 to 1005. Then the probability of selection for

each individual is almost the same. These two conditions are undesirable. One way to overcome

this difficulty is to scale the fitness before selection (Goldberg, 1989).

Tournament-Based Selection

The basic tournament selection (Brindle, 1981) is to choose M individuals randomly and

return the best one of these. This is generally called size M Tournament selection. After this

selection, the crossover and mutation operator are applied to generate a new child. When the

fitness of this new child is better than the worst individual of the previous generation, replacement

of this worst individual occurs. Boltzmann tournament selection (Goldberg, 1990) evolves

a Boltzmann distribution across a population and time using pairwise probabilistic acceptance

and anti-acceptance mechanisms.

2.6.3 Crossover

The crossover operator is one of the most important operators in genetic algorithms. The basic

idea is to combine some genes from different chromosomes. It is the recombination of bit strings

by exchanging the segments between pairs of chromosomes. Many crossover techniques and

the example will be illustrated here.

22

One-Point Crossover

The one point crossover technique is the most simple crossover technique, but it is very efficient.

The procedure of one-point crossover is to select one crossover point at random. Genes up to

and including the crossover point are copied to the respective child. The remaining genes are

copied to the alternate child. Assume the chromosomes of parent1 and parent2 are as follows:

parent1: 3 6 7 1 8 4 2 5

parent2: 1 8 4 7 3 2 5 6

If position 3 is randomly generated as the crossover position, then two children are as follows:

child1: 3 6 7j7 3 2 5 6

child2: 1 8 4j1 8 4 2 5

where the first child has the first three genes from parent1, the others from parent2, the second

child has the first three genes from parent2, the others from parent1.

Two-Point Crossover

The procedure of two point crossover is similar to that of one-point crossover except that two

positions are selected and only the bits between the two positions are swapped. The first part

and last part of chromosomes are preserved. With the same parents above, positions 2 and 5 are

generated as the crossover positions, then two children are as follows:

child1: 3 6j4 7 3j4 2 5

child2: 1 8j7 1 8j2 5 6

N-Point Crossover

The procedure of n-point crossover is also similar to one-point crossover except that n positions

are selected and only the bits between odd and even crossover positions are swapped. The bits

between even and odd crossover positions are unchanged. Assume the chromosomes of parent1

and parent2 are as follows:

23

parent1: 3 6 6 7 1 4 8 4 2 5 8

parent2: 1 8 6 4 7 3 2 3 2 5 6

If positions 2, 5, 6 and 9 are selected as the crossover positions, then two children can be

generated as follows:

child1: 3 6j6 4 7j4j2 3 2j5 8

child2: 1 8j6 7 1j3j8 4 2j5 6

Uniform Crossover

There are two popular multi-point crossover techniques, one is n-point crossover, the other is

uniform crossover. In uniform crossover (Syswerda, 1989), each gene is copied from a parent

based on a random flip of a fair coin, i.e., each gene of the first parent has a 0.5 probability

of swapping with the corresponding gene of the second parent. Assume the chromosomes of

parent1 and parent2 are as follows:

parent1: 3 4 5 1 8 6 2 5

parent2: 4 8 3 7 9 2 6 1

A number between 0 and 1 is generated randomly for each position. If the random number

generated for a given position is less than 0.5, then child1 copies the gene from parent1, and

child2 copies the gene from parent2; otherwise, vice versa. If the random numbers generated

for each position are 0.9, 0.4, 0.1, 0.8, 0.6, 0.5, 0.4 and 0.7, then two children are as follows:

child1: �� 4 5 �� �� �� 2 ��

child2: �� 8 3 �� �� �� 6 ��

where the crossover points are marked by the symbol �.

Order-Based Crossover

Order-based crossover technique (Davis, 1991) is used when the search space is a permutation,

so that, somehow, crossing 1 3 2 5 4 with 3 2 1 4 5 is always sure to yield another valid

permutation, such as 1 5 3 2 4. Let the following be two parents:

24

parent1: 1 3 2 5 4

parent2: 5 4 2 1 3

One kind of order-based crossover operator works as follows:

Choose two random genes of the first parent, for example

parent1: 1 �� 2 �� 4

Make up the child by first copying the unchosen genes:

child: 1 2 4

and then fill in the other values, 3 and 5, but in the same order as they occur in the second parent,

yielding:

child: 1 5 2 3 4

The uniform order-based crossover is a powerful order-based crossover technique. In this kind

of crossover, several gene positions of the chromosome are chosen randomly and the order in

which these genes appear in the second parent is imposed on the first parent to produce offspring.

The genes in the other positions are the same as the first parent.

2.6.4 Mutation

Selection and crossover effectively search and recombine the chromosomes, but occasionally

they may lose some potentially useful genes and it is also possible that some useful genes are

not generated in the initial step. A better result cannot be reached for lack of some useful genes.

This difficulty can be overcome by using the mutation technique. The basic mutation operator is

to randomly generate a number as the crossover position and then change the value of this gene

randomly. For example, if the length of the chromosome is 6 and a chromosome after crossover

is

1 4 7 2 8 3

A random number generator generates a position 2 as the gene position and the other random

number generator generates any valid gene value, such as 6, then the chromosome is mutated to

25

1 �� 7 2 8 3

Another possible approach is to check each gene position using a random number compared

with the mutation rate, if this number is less than the mutation rate, then this gene needs to

mutate. Assume the mutation rate is 0.01, if the random number is 0.005 for the first position

and the random numbers are larger than the mutation rate in the other positions, then this gene

is mutated by a random number in the first position, such as 7. The result is as following:

�� 4 7 2 8 3

If the search space is a permutation, the mutation operation can work by swapping several genes

in the chromosome randomly.

2.6.5 Inversion

In the procedure of inversion, two points are chosen at random along the length of the chromo-

some and the order of the genes between these two points is inverted. Only one parent is needed

in the inversion operation. If two positions 3 and 6 are chosen and the inversion operator is

applied to the string

4 7 �� 5 9 �� 3

then the new string is

4 7 �� �� �� �� 3

2.6.6 Schema Theorem

A schema H is a pattern of gene values which may be represented by a string of binary symbols

f�� �g and a symbol # which matches any gene values. For example, the chromosome “01011”

contains, among others, the schemata ��#���#��, ��#��##��, ����##��� and “#������. The order of

a schema denoted by o(H) is the number of non-# symbols in the schemata. The defining

length of a schema denoted by �(H) is the distance between the outermost non-# symbols.

In this example, the order is 3, 2, 3 and 4 respectively; the defining length is 3, 2, 5 and 4

respectively.

26

m(H� t) denotes the frequency of a schema H at generation t. It will change for the next

generation in proportion to the selection of probability of strings. Let m(H� t + �) be the

frequency of schema H at generation t + �. The relationship between m(H� t) and m(H� t + �)

can be expressed as the following formula:

m(H� t + �) = m(H� t)
f(H)
f̄

(����)

where f(H) is the average fitness of a string containing schema H in generation t + � and f̄

represents the average fitness of the whole population.

Let Pc be the crossover probability and l be the length of the string. Because a schema survives

when the crossover point is selected outside the defining length, the survival probability under

simple crossover is

Ps � �� Pc
�(H)� �

l� �
� (����)

So, if the reproduction and simple crossover operation are independent, the frequency of schema

for the next generation can be estimated as following:

m(H� t + �) � m(H� t)
f(H)
f̄

[�� Pc
�(H)� �

l� �
]� (����)

The probability that the given schema H exists in the next generation will be high if the length

of the string l is long and the defining length �(H) is short.

If the mutation operator is applied, a single gene will survive with probability ��pm, wherepm is

the mutation probability. Since each of the mutations is statistically independent, the probability

of surviving mutation is (� � pm)o(H). This is approximated by the expression � � Pmo(H) if

pm
 �. Hence, if reproduction, crossover and mutation operators are applied, the frequency

of schema for the next generation can be expressed as following:

m(H� t + �) � m(H� t)
f(H)
f̄

[�� Pc
�(H)� �

l� �
� Pmo(H)]� (����)

27

This equation implies that the short, low order, above average schemata receives exponentially

increasing probability in the subsequent generations, i.e., highly fit schemata of low order and

short defining length are particularly important to genetic algorithms.

2.7 Parallel Processing

A conventional computer uses one processor which executes a set of instructions in order to pro-

duce results. At any instant time, there is only one operation being carried out by the processor.

Parallel processing is concerned with producing the same results using multiple processors. The

goal of using parallel processing is to reduce the running time in a computer system.

Two basic parallel processing methods are pipeline processing and data parallelism. The prin-

ciple of pipeline processing is to separate the problem into a cascade of tasks where each of the

tasks is executed by an individual processor. As shown in Fig. 2.3, data is transmitted through

each processor which executes a different program on each of the data elements. Since the

program is distributed over the processor in the pipeline and the data moves from one processor

to the next, no processor can proceed until the previous processor has finished its task and passed

the data to it. Data parallelism is a popular approach which involves distributing all the data to

Data Input Data Output
Task 1 Task 2 Task 3

Figure 2.3: Task and data distribution of pipeline processing

be processed equally amongst all the processors in the computer. As shown in Fig. 2.4, each

processor contains the same program task operating on the subset of the data. Data parallelism

can be easily applied to genetic algorithms by dividing the population into several groups and

running the same algorithm for each group at the same time using different processors. This is

called a parallel genetic algorithm (PGA). The purpose of applying parallel processors to

genetic algorithms is more than just a hardware accelerator. Rather a distributed formulation is

developed which gives better solutions with less computation. In order to reach this function,

28

All tasks

Data set

All tasks All tasks

Data set Data set1 2 3

Processor 1 Processor 2 Processor 3

Figure 2.4: Task and data distribution of data parallelism

the communication among these groups is executed for some fixed generations, i.e., the par-

allel genetic algorithm periodically selects promising individuals from each subpopulation and

migrates them to different subpopulations. With the migration (communication), each subpop-

ulation will receive some new and promising chromosomes to replace the worst chromosomes

in this subpopulation. This helps to avoid premature convergence.

2.8 Bound for Minkowski Metric

Given one codeword Ct and the test vector X in k-dimensional space, the distortion of the

Minkowski metric of order n can be expressed as follows:

Dmin = D(X�Ct) =
kX
i=�

jxi � citjn (����)

where Ct = fc�t � c�t � ���� cktg and X = fx�� x�� ���� xkg.

The generalized bound for the Minkowski metric based on the Lp distortion measure can be

found as follows:

If

sX
i=�

jxi � cijjp �
n
p

q
h

n
p
��Dmin (����)

then

kX
i=�

jxi � cijjn � Dmin (����)

where s � h � k and p � n.

If p = n, then Eq. 2.39 reduces to Eq. 2.40. For the case where p � n, the bound can be proved

29

as follows :

Apply Lagrange multiplier technique to

minimize

hX
i=�

ami (����)

subject to

hX
i=�

ai = c� ai � � �i� (����)

If the minimum is at an interior point, then it is a stationary point of

f(ai� �) =
Ph

i=� a
m
i � �(

Ph

i=� ai � c) with respect to ai(� � i � h) and �.

Taking derivatives, 	f
	ai

= mam��i � � = � �i.

Hence ai = (��m)
�

m�� �i (which implies ai = aj �i� j) and so, to make 	f
	�

= �, ai = c�h �i.

Here
Ph

i=� a
m
i =

Ph

i=�(c�h)m = h(c�h)m = h��mcm.

The next step is to prove that the climax
Ph

i=� a
m
i = h��mcm is the minimum point, and so to

prove the following proposition.

If

hX
i=�

ai = c (����)

then

hX
i=�

ami � h��mcm (����)

where m � �, h � �, and ai � � for all i.

This can be proved by induction. When h = �, Eq. 2.43 reduces to a� = c and Eq. 2.44 to

am� � cm. Hence the proposition is true for h = �. Assume it is true for h � �. By using the

Lagrange multiplier technique, if the minimum of
Ph

i=� a
m
i is at an interior point (ai � � for all

i), then this must be at the point where ai = c�h for all i, at which point
Ph

i=� a
m
i = h��mcm. At

a non-interior point (without loss of generality, ah=0),
Ph

i=� a
m
i =

Ph��
i=� ami � (h��)��mcm �

h��mcm.

The minimum cannot be at the non-interior point since the value there is greater than at the

30

interior point already found and hence the value where ai = c�h is in fact the minimum. The

proof is completed.

Hence if c � m
p
hm��Dmin, then

Ph

i=� a
m
i � h��mcm � h��m(hm��Dmin) = Dmin.

Set ai = bpi , hence if
Ph

i=� b
p
i � m

p
hm��Dmin, then

Ph

i=� b
pm
i � Dmin.

Set pm = n, hence if
Ph

i=� b
p
i �

n
p

q
h

n
p
��Dmin, then

Ph

i=� b
n
i � Dmin.

Set bi = jxi�cij j, hence
Ph

i=� jxi�cij jp �
Ps

i=� jxi�cij jp ifh � s, then the bound for Minkowski

metric based on Lp metric is derived.

If Eq. 2.39 is met, then Cj cannot be the nearest neighbour to X for the Minkowski metric of

order n.

This bound has the following properties :

1. Set s = p = h = � and n = �, the hypercube approach.

2. Set p = � and n = �, the partial distortion search (PDS) for the Euclidean distortion

measure.

3. Set p = n, PDS for Lp distortion measure.

4. Set n = �, p = � and h = k, absolute error inequality (AEI) criterion.

5. Set n = � and p = �, defined here as the improved absolute error inequality (IAEI)

criterion, provides a tighter bound than the absolute error inequality (AEI) criterion.

6. For the Minkowski metric of ordern, this bound provides the elimination criterion from L �

metric to Ln metric and also provides an advanced approach by adapting parameters s and

h from 1 to k, i.e., this bound can be separated into several sections. For 13-dimensional

coefficients and the Euclidean metric, it is possible to separate this bound into four sections.

These four sections are to set h = � to check the first dimension-difference, h = � for the

sum from the first dimension-difference to the fourth, h = � for the sum from the first

dimension-difference to the ninth and h = �� for the sum of all dimension-differences.

31

2.9 Bound for Quadratic Metric

In speech recognition, the hidden Markov model (HMM) with the Gaussian mixture VQ

codebook probability density function has been shown to be a promising method. The main

computation time is in searching the nearest neighbour by evaluating the log likelihood of

Gaussian mixture distributions, i.e., the calculation of

log
�

(��)k��jWmj��� e
� �

�
(X�Cm)tW��

m (X�Cm) (����)

That is to compute k
�
log(��) + �

�
logjWmj + �

�
(X�Cm)tW��

m (X�Cm), where m is from 1 to N

andN is the number of mixture components. Cm andWm are the mean value and the covariance

of mixture component m. Obviously, the quadratic metric (X � Cm)tW��
m (X� Cm) dominates

the computation time.

For convenience and brevity, assume that the covariance of every mixture component m is the

same. The quadratic metric can be expressed as

D(X�Cm) = (X� Cm)tW��(X� Cm) (����)

where (X � Cm) is error column vector and W is the covariance matrix given as:

W =
�

T

TX
i=�

(Xi � X̄)(Xi � X̄)t (����)

where T is the number of training vectors and X̄ is the mean of Xi, i = �� ���� T, i.e.,

X̄ =
�

T

TX
i=�

Xi (����)

W�� is the inverse of the covariance matrix W. For the conventional exhaustive method,

k(k + �)N multiplications, (k� +k� �)N additions and N� � comparisons are needed for every

test frame.

2.9.1 Metric Transform Using Triangular Matrix

The quadratic metric is transformed to the Euclidean metric using the lower triangular matrix

and the upper triangular matrix in this subsection. By applying the improved absolute error

32

inequality criterion to the metric transform, the bound for quadratic metric is obtained.

Given that W�� can be represented in terms of the product of the lower triangular matrix and

the upper triangular matrix according to Eq. 2.49 as

W�� = LLt (����)

L =

�
�����������������

l�� l�� l�� ��� lk�

� l�� l�� ��� lk�

� � l�� ��� lk�

��� ��� ��� ��� ���

� � � ��� lkk

�
																

(����)

Set Em = X� Cm, then the quadratic metric can be expressed as follows:

D(X�Cm) = EtmLL
tEm = jEtmLj� (����)

Set L = [V�V�V����Vk], and assume

Dmin = D(X�Cm) =
kX
i=�

jEtmVij� (����)

If

sX
i=�

jEtjVij �
p
hDmin� (����)

then D(X�Cj) � Dmin (����)

where s � h � k.

After modification of the quadratic metric to Eq. 2.51, the improved absolute error inequality

33

(IAEI) criterion can be easily applied as shown in Eq. 2.52 to Eq. 2.54.

2.9.2 Metric Transform Using KLT

The Karhunen-Loêve transform (KLT) is also called the eigenvector transform, principal com-

ponent transform and Hotelling transform. It is an optimal transform in a statistical sense under

a variety of criteria. The KLT has the following properties (Elliott, 1982):

1. It is the best vector transform in the sense of decorrelating the sequence completely in the

transform domain.

2. It packs the most energy (variance) to the low order elements.

3. It minimizes the mean squared error (MSE) between the original and reconstructed data

for any specified bandwidth reduction or data compression.

4. It minimizes the total entropy of the data sequence.

Eigenvectors of the covariance matrix of a given sequence are the basis functions of the KLT.

Assume P and Λ are the eigenvector and diagonal matrix of eigenvalues, respectively. The

quadratic metric can be transformed to the Euclidean metric as follows:

D(X�Cm) = (X� Cm)tW��(X� Cm)

= (X� Cm)tfPΛPtg��(X� Cm)

= (X� Cm)tfP

�
�����������������

�� � � ��� �

� �� � ��� �

� � �� ��� �

��� ��� ��� ��� ���

� � � ��� �k

�
																

Ptg��(X� Cm)

34

= (X� Cm)tfPt��

�
�����������������

�� � � ��� �

� �� � ��� �

� � �� ��� �

��� ��� ��� ��� ���

� � � ��� �k

�
																

��

P��g(X� Cm)

= (X � Cm)tfP

�
�����������������

�
��

� � ��� �

� �
��

� ��� �

� � �
��

��� �

��� ��� ��� ��� ���

� � � ��� �

�k

�
																

Ptg(X � Cm)

= (X � Cm)tfP

�
�����������������

�p
��

� � ��� �

� �p
��

� ��� �

� � �p
��

��� �

��� ��� ��� ��� ���

� � � ��� �p
�k

�
																

�
�����������������

�p
��

� � ��� �

� �p
��

� ��� �

� � �p
��

��� �

��� ��� ��� ��� ���

� � � ��� �p
�k

�
																

Ptg(X � Cm)

= (X� Cm)tQQt(X� Cm) = UtU =
kX
i=�

juij�� (����)

35

where

Q = P

�
�����������������

�p
��

� � ��� �

� �p
��

� ��� �

� � �p
��

��� �

��� ��� ��� ��� ���

� � � ��� �p
�k

�
																

�

U = Qt(X� Cm) and ui is the element of the row matrix U.

Apply the IAEI to Eq. 2.55 and assume the current minimum distortion

Dmin = D(X�Cm)� (����)

If

sX
i=�

juij � phDmin� (����)

then D(X�Cj) � Dmin (����)

where s � h � k.

After the transform of quadratic metric to Eq. 2.55 using KLT, another bound for quadratic

metric is derived as shown in Eq. 2.56 to Eq. 2.58.

36

Chapter 3

Efficient Codeword Search Algorithms

Vector Quantization (VQ) (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al., 1980) has been

widely used for various applications involving VQ-based encoding and VQ-based recognition.

The response time of encoding and recognition is a very important factor to be considered for

real-time applications. Unfortunately, a full search algorithm is applied in VQ encoding and

recognition and this is a time consuming process when the codebook size is large. A vector

quantizer of rate r bits/sample and dimension k is a mapping from a k-dimensional vector space

into some finite subsetC = fCj; j = �� ���� Ng, where N = �kr. The subsetC is called a codebook

and its elements Cj are called codewords, codevectors, reproducing vectors, prototypes, or

design samples. A distortion measure D(X�Cj) is a non-negative dissimilarity measure between

vector X and codewords Cj. This distortion is used to measure how close the input vector X

is to these codewords Cj. The nearest codeword is to be selected in order to encode the input

vector X. Therefore, encoding each input vector requires N distortion computations and N� �

comparisons.

The codeword search problem in vector quantization is to assign one codeword to the test vector

in which the distortion between this codeword and the test vector is the smallest among all

codewords. Given one codeword Ct and the test vector X in the k-dimensional space, the

distortion of the squared Euclidean metric can be expressed as follows:

D(X�Ct) =
kX
i=�

(xi � cit)
�� (���)

where Ct = fc�t � c�t � ���� cktg and X = fx�� x�� ���� xkg.

37

Each distortion calculation requires k multiplications and �k � � additions. Therefore, it is

necessary to perform k�kr multiplications, (�k � �)�kr additions, and �kr � � comparisons

for encoding each input vector. The computation complexity depends on codebook size and

dimensions. It needs large codebook size and higher dimension for high performance in VQ

encoding and recognition systems resulting in increased computation load during codeword

search.

3.1 History of Codeword Search

Since codeword search is a serious problem in real time application of vector quantization, the

history of codeword search will be introduced first, then a series of efficient methods will be

presented in this chapter.

3.1.1 Partial Distortion Search

The partial distortion search (PDS) algorithm (Bei & Gray, 1985) is a simple and efficient

codeword search algorithm which allows early termination of the distortion calculation between

a training vector and a codeword by introducing a premature exit condition in the search process.

Given the current minimum distortion,

D(X�Ct) = Dmin� (���)

if

sX
i=�

(xi � cij)
� � Dmin� (���)

then D(X�Cj) � D(X�Ct)� (���)

where s � k.

The efficiency of PDS derives from elimination of an unfinished distortion computation if its

partial accumulated distortion is larger than the current minimum distortion. This will reduce

computation to (k � s) multiplications and �(k � s) additions at the expense of s comparisons.

The detail algorithm of the partial distortion search is described as follows:

Step 0: Set Dmin = � (a very large number), i = �, and jmin = j = �.

38

Step 1: If j � N, then terminate the algorithm and record jmin as the index of the nearest

codeword; otherwise D = �.

Step 2: D = D + (xi � cij)
�.

Step 3: If D � Dmin, then j = j + � and go to step 1; otherwise go to step 4.

Step 4: If i � k, then i = i + � and go to step 2; otherwise Dmin = D, jmin = j, j = j + � and go

to step 1.

The efficiency of the partial distortion search (PDS) algorithm can be further improved by

ordering the codewords (Paliwal & Ramasubramanian, 1989). This requires calculation of the

probability Pi for each codeword from the training data: Pi is the probability of the codeword

Ci which is nearest neighbour to the training data. The codewords are then arranged in the

codebook in the order of decreasing Pi. After this arrangement, the probability of obtaining the

nearest codeword in the early stage can be increased which helps in saving computation time.

3.1.2 Hypercube Approach

The hypercube approach is a well known premature method (Lo & Cham, 1993) which is

efficient if the difference for any coefficient is generally larger than the difference of the other

coefficients, such as the first coefficient of cepstrum coefficients. Assume Eq. 3.2 has already

existed,

if jxi � cijj �
p
Dmin� � � i � k� (���)

then Cj will not be the nearest neighbour to X.

There is no multiplication operation required for the test of the hypercube approach.

3.1.3 Absolute Error Inequality Criterion

The absolute error inequality (AEI) criterion (Soleymani & Morgera, 1987b) is the mathematical

relationship between the city block metric (or L�) and the Euclidean metric (or L�). Assume Ct

is the current nearest neighbour to X, that is,

D(X�Ct) = Dmin�

39

if

sX
i=�

jxi � cijj �
p
kDmin� (���)

then

kX
i=�

(xi � cij)
� � Dmin� (���)

where s � k.

This means Cj will not be the nearest neighbour to X if Eq. 3.6 is satisfied. This criterion can be

estimated by comparing the first dimension-difference of the test vector and codeword with the

right hand side of Eq. 3.6. If Eq. 3.6 is not satisfied for s = �, then this criterion is checked for

higher s. This criterion is checked by increasing s until s = k or the criterion is satisfied.

3.1.4 Triangular Inequality Elimination

Triangular inequality elimination (Pan, 1988) is an efficient method for codeword search. Let

V be the set of data vectors and C be the set of codewords and x, y belong to the set V. On V, a

distortion measure is defined as a mapping d: V
 V� R, which is assumed to fulfill the metric

properties:

d(x� y) � �;d(x� y) = � iff x = y (���)

d(x� y) = d(y� x) (���)

d(x� y) + d(y� z) � d(x� z) (����)

As shown in Fig. 3.1, let C�, C�, C� be three different codewords and t be a test vector, then

the following three criteria are obtained.

� Criterion 1:

Given the triangular inequality

d(t� C�) + d(t� C�) � d(C�� C�); (����)

40

C 1

C 2

C 3

t

d(C 1 , C 2) d(C 2 , C 3)

d(t , C 3)d(t , C 1)

d(t , C 2)

Figure 3.1: Distortion diagram of test sample and codewords

if d(C�� C�) � ��d(t� C�)� (����)

then d(t� C�) � d(t� C�)� (����)

� Criterion 2:

Given the triangular inequality

d(C�� C�) � d(t� C�) + d(t� C�); (����)

if d(C�� C�) � d(t� C�) + d(t� C�)� (����)

then d(t� C�) � d(t� C�)� (����)

� Criterion 3:

Assume d(t� C�) � d(t� C�)�

Given d(C�� C�) � d(t� C�)� d(t� C�); (����)

41

if d(C�� C�) � d(t� C�) � d(t� C�)� (����)

then d(t� C�) � d(t� C�)� (����)

Criterion 2 and 3 can be merged to one criterion only, i.e.,

if d(t� C�) � jd(C�� C�)� d(t� C�)j� (����)

then d(t� C�) � d(t� C�)� (����)

To use Criterion 1, these distortions between all pairs of codewords are calculated in advance.

If Eq. 3.12 is met, then the computation of d(t� C�) can be omitted if d(t� C�) has already been

computed. Criterion 1 can be modified for square error distortion measure. In the codeword

searching system, a table is made to store one-fourth of the values of square distortion between

codewords, i.e., store the value of d�(Ci� Cj)��, for i = �� �� ���� N; j = �� �� ����N. Here N is

the number of codewords. The overhead of criterion 1 is to establish the distortion table in

which N(N� �)k�� multiplications and N(N� �)(�k� �)�� additions are needed. As shown

in Fig. 3.2, the physical meaning of Criteria 2 and 3 can be described as follows :

If the codeword Ci� i �= �� �� does not locate between the two concentric circles (or in general

hyperspheres) centered on C� with radii d(t� C�) � d(t� C�), the computation of its distortion

to the test sample can be omitted, i.e., if d(Ci � C�) � d(t� C�) + d(t� C�) or d(Ci� C�) �

d(t� C�)�d(t� C�)� then eliminate the computation ofCi. For the special cased(t� C�) = d(t� C�),

Criterion 3 is inappropriate and Criterion 2 reduces to Criterion 1. Since Criterion 2 and 3 will

induce square root computation, it is simple and efficient to use Criterion 1 only.

3.1.5 Approximating and Eliminating Search Algorithm

The approximating and eliminating search algorithm (AESA) was proposed by (Vidal, 1986).

The detail of this algorithm is described as follows:

Step 0: Calculate N(N��)
�

distortions for every possible pair of codewords, N is the number of

codewords.

42

C 1
t

C 2
d(t,C1) + d(t,C2)

d(t,C1)

d(t,C2)

d(t,C1)d(t,C2) -

Figure 3.2: Geometric diagram for Criteria 2 and 3 of triangular inequality elimination

Step 1: Compute d(X�Ci), Ci is a selected codeword and X is a data vector. Set U = fCig and

n = i. Here n is codeword index of the current nearest codeword and U is a set of used

codewords.

Step 2: Eliminate codeword Cj if d(Cj � Ci) � �d(X�Ci).

Step 3: If all codewords are eliminated or used, then terminate the program; otherwise, s =

argminp(
P

Cl�U
jd(Cp� Cl)�d(X�Cl)j). Cp is an unused and non-eliminated codeword.

Step 4: Calculate d(X�Cs) and U = U � fCsg.

Step 5: Find the current nearest codeword index n = argminp�fn
sgd(X�Cp). If n = s, then

Q = U; otherwise, Q = fCsg.

Step 6: Eliminate the unused and non-eliminated codeword Cj if d(Cj� Cq) � d(X�Cq) +

d(X�Cn) or d(Cj � Cq) � d(X�Cq) � d(X�Cn), where Cq
Q. Go to step 3.

43

In step 0, the distortions for every possible pair of codewords are calculated off line. Steps 1 and

2 are initializations of this algorithm. Criterion 1 of the triangular inequality elimination used in

step 2 is not efficient because the value of d(X�Ci) may be large, since Ci is selected randomly.

The tentative matching codeword is found in step 3. In step 4, the distortion between the data

vector and the tentative matching codeword is calculated. The nearest codeword is updated in

step 5. The potential for matching impossible codewords is eliminated using Criteria 2 and 3

of the triangular inequality elimination in the last step. The main effect of this algorithm is to

find an efficient tentative matching codeword and then Criteria 2 and 3 of triangular inequality

elimination are applied to eliminate impossiblecodeword matching. Here, the tentative matching

codeword is a non-eliminated and unused codeword which satisfies Eq. 3.22.

Cs = minCp (
X
Cl�U

jd(Cp� Cl)� d(X�Cl)j)� (����)

This tentative matching codeword is the approximation of the nearest to the intersection of all

hyperspheres with radius d(X�Cl), �Cl
U.

3.1.6 Minimax Method

The minimax method (Cheng et al., 1984) is to take the codeword with the minimum value of

the maximum dimension-distortion as the tentative match and then use the hypercube approach

and the partial distortion search (PDS). The minimax method is depicted as follows :

Step 1: For the given test vector X and codebook C, calculate the absolute error eij = jxi � cijj,
i = �� �� ���� k, j = �� �� ����N.

Step 2: Find the maximum component of each error vector, that is to find maxieij for each

codeword. For convenience, interchange the maximum component of error vector with

e�j.

Step 3: Find the minimum neighbour l =arg minjmaxieij.

Step 4: Find the squared Euclidean distortion Dmin =
Pk

i=� e
�
il.

Step 5: Use the hypercube approach, i.e., if maxieij �
p
Dmin, then cj will not be the nearest

neighbour to X. Use the PDS to delete the rest of the codewords.

44

3.1.7 Previous Vector Candidate

For speech data, the classification result of the present vector is usually the same as or close to

the classified result of the previous vector. The nearest codeword of the previous vector can be

used as the tentative match called previous vector candidate which is first proposed by (Pan,

1988; Chen & Pan, 1989).

In vector quantization of images, data are first divided into subsequent blocks of size k = M
M.

The previous vector candidate has also been applied to image coding (Huang & Chen, 1990)

by taking the advantage of high correlation between contiguous subimages. Let C(m�n) denote

the nearest codeword of the block image X(m�n). As shown in Fig. 3.3, the nearest codewords

of the four adjacent blocks are used as the tentative matching codewords, i.e., calculate the

distortions between the data vector X(i� j) and codewords C(i � �� j),C(i� �� j� �),C(i� j � �)

and C(i+ �� j� �). The codeword with the minimum distortion is chosen as the candidate. Then

the Criterion 1 of the triangular inequality elimination is used to eliminate impossible codeword

matching. Partial distortion search (PDS) is used as the last stage to calculate the distortion for

the rest of the codewords. The previous vector candidate has also been applied to image coding

using vector quantization by (Ngwa-Ndifor & Ellis, 1991). Only one codeword C(i � �� j)

is used as the tentative match and only the partial distortion search (PDS) is applied in this

algorithm. The previous vector candidate, Criterion 1 of the triangular inequality elimination

and the partial distortion search were also applied to Manhattan (Chebyshev) metric for VQ

image coding by (Nyeck et al., 1992).

3.1.8 Subcodebook Search Algorithm

A subcodebook search (SCS) algorithm (Lo & Cham, 1993) was developed for efficient VQ

encoding of images. This algorithm also takes the advantage of high correlation between two

adjacent blocks. The control codeword is one of the four nearest codewords of the four

adjacent blocks which has the smallest distortion to the current encoding block. In the training

phase, the decision distortion for each control codeword is decided from Eq. 3.23.

Di =
NX
j=�

PCi(Cj)D(Cj� Ci)� (����)

45

X(i , j)C(i-1 , j)

 C(i-1 , j-1) C(i , j-1) C(i+1 , j-1)

X(i-1 , j+1) X(i , j+1)

X(i+1 , j)

X(i+1 , j+1)

Figure 3.3: Diagram of four adjacent codewords for image coding

where � � i � N, PCi(Cj) is the probability that the best match to the training data vectors is

the codeword Cj when the control codeword isCi and the squared Euclidean distortion measure

is applied.

The subcodebooks can be constructed by grouping those codewords having distortion to the

control codeword Ci smaller or equal to 4Di. The additional memory requirements for SCS

algorithm are two tables: the decision distortion for each subcodebook and the mapping codeword

indices for each subcodebook.

In the encoding phase, the control codeword Ci is determined first. Compare the distortion

D(X�Ci) and the decision distortionDi, here X is the data vector. If D(X�Ci) � Di, then search

the whole codebook; otherwise, search the corresponding subcodebook. In searching the whole

codebook or subcodebook, the partial distortion search and hypercube approach are applied.

46

3.1.9 Fast Sliding Search Algorithm

The fast sliding codeword search algorithm was presented by (Koh & Kim, 1988). This

algorithm uses the codeword with the most similar sum of components to the data vector as the

tentative matching codeword, i.e., find a codeword Ci such that

i = argminlj
kX
j=�

xj �
kX
j=�

cjlj� (����)

In the training phase, the sum of all dimensions for each codeword is calculated first and these

values are sorted in increasing order or decreasing order. In the encoding phase, the tentative

matching codeword is obtained by using Eq. 3.24. Then p codewords are searched fromCi� p

�
to

Ci+ p
�
�� which is illustrated in Fig. 3.4. If i� p

�
� �, then search the codeword from C� to Cp. If

i + p

�
� � � N, then search the codeword from CN�p+� to CN. This algorithm is an approximate

search algorithm.

Pk

j=� C
j
�Pk

j=� C
j
�

...Pk

j=� C
j

i� p

�
��Pk

j=� C
j

i� p

�

...Pk

j=� C
j
i

...Pk

j=� C
j

i+ p
�
��Pk

j=� C
j

i+ p

�

...Pk

j=� C
j
N��Pk

j=� C
j
N

Figure 3.4: Search strategy of fast sliding search algorithm

3.1.10 Equal-average hyperplane partitioning method

The equal-average hyperplane partitioning method for vector quantization of image was pro-

posed by (Guan & Kamel, 1992). This method utilizes hyperplanes orthogonal to the central

line l to partition the search space. Any point on l has the same value for every dimension. As

explained in (Lee & Chen, 1994), each point on a fixed hyperplane H, which is orthogonal to

47

the central line l and intersects l at point LH = (mH�mH� ����mH), will have the same mean value

mH, such a hyperplane is called an equal average hyperplane.

In the training phase of the equal-average hyperplane partitioning method, the sum of all di-

mensions for each codeword is calculated and divided by k first. These values are sorted in

increasing order. It is similar to the fast sliding search algorithm. In the encoding phase, the

mean of the data vector is calculated as

mx =
�

k

kX
j=�

xj�

Then the tentative matching codeword is found first by using the same method as the fast

sliding search algorithm, i.e., calculate Eq. 3.25.

i = argminljmx � �

k

kX
j=�

cjlj� (����)

Compute the distortion between this data vector X and the tentative matching codeword C i,

di =

vuuut
kX
j=�

(xj � cji)��

Any other codeword which is closer to the data vector X than the tentative matching code-

word Ci will be located inside the hypersphere centred at X with radius di. Projecting

the hypersphere on l, two boundary projection points Lmax = (mmax�mmax� ����mmax) and

Lmin = (mmin�mmin� ����mmin) on l can be found, where

mmax = mx +
dip
k

(����)

and

mmin = mx � dip
k
� (����)

Hence, only the codewords with mean value from mmin to mmax are searched. The equal-

average hyperplane partitioning method uses the mean value to eliminate unlikely codewords

and hence much computation time is saved. This algorithm is further improved by introducing

the following formula (Lee & Chen, 1994):

if jVX� VCpj � di� (����)

48

then dp � di� (����)

where

VX =

vuuut
kX
j=�

(xj �mx)� (����)

and

VCp =

vuuut
kX
j=�

(cjp �mCp)�� (����)

If Eq. 3.28 is met, then Cp will not be the nearest codeword to data vector X. By testing Eq. 3.28

first, if it is not satisfied, then check if

mp �mmax (����)

or

mp � mmin� (����)

If they are still not met, then calculate the distortion between X and CP. Note that memory size

ofN(k+�) is needed for this algorithm compared withN(k+�) for the equal-average hyperplane

partitioning method.

3.1.11 Fast Full Search Equivalent Encoding Algorithm

The fast full search equivalent encoding algorithms (Huang et al., 1992) utilize the minimum

mean distance as the tentative matching approach, then apply the three criteria of triangular

inequality elimination to reject unlikely codeword matching. The first algorithm uses the

minimum mean distance as the tentative matching codeword and Criterion 1 of the triangular

inequality elimination as the elimination method which is described as follows:

Step 1: Compute rx =
Pk

j=� x
j.

Step 2: Find codeword Ci, such that i = argminlj
Pk

j=� x
j �Pk

j=� c
j
lj.

Step 3: Calculate the L� distortion dmin = d(X�Ci) =
Pk

j=� jxj � c
j
ij.

Step 4: Check the termination of this program. If d(Cp
Ci)
�

� dmin, then omit the distortion

calculation of codeword Cp, set p = p + � and goto step 4; otherwise, goto next step.

49

Step 5: Calculate d(X�Cp), update dmin = minfd(X�Cp)� dming and i = argminlfd(X�Cl)g,

set p = p + � and goto step 4.

From Criteria 2 and 3, codeword Cp can be eliminated if it does not satisfy the following

inequality:

d(X� Z) � d(X�Ci) � d(Z�Cp) � d(X� Z) + d(X�Ci)� (����)

where d(X� Z) is the L� distortion between data vector X and any other vector Z. By setting the

vector Z to the origin, this inequality can be rewritten as

kX
j=�

jxjj � d(X�Ci) �
kX
j=�

jcjpj �
kX
j=�

jxjj + d(X�Ci)� (����)

If Eq. 3.35 is not met, then eliminate codeword Cp. Combining Eq. 3.35 with the minimum

mean distance as the tentative matching approach is the algorithm 2 in (Huang et al., 1992).

Combining Criterion 1 of triangular inequality elimination, Eq. 3.35 and the minimum mean

distance as the tentative matching approach is the algorithm 3. In terms of the total number

of mathematical operations, algorithm 1 outperforms the other two algorithms. In terms of the

number of multiplications, algorithm 3 is superior to the other two algorithms.

3.1.12 Adaptive Fast Encoding Algorithm

From Eq. 3.34, the vector Z can be set to any value. This inequality will be very efficient if

small values of d(X� Z) and d(X�Ci) are selected. Eq. 3.34 provides different constraints on the

test codewords for different values of vector Z. In previous work (Salari & Li, 1994), three

values of vector Z are selected such that three smaller d(X� Z) are provided. Hence codeword

CP can be eliminated if Cp cannot satisfy any of the following three inequalities:

d(X� Z�) � d(X�Ci) � d(Z�� Cp) � d(X� Z�) + d(X�Ci)�

d(X� Z�) � d(X�Ci) � d(Z�� Cp) � d(X� Z�) + d(X�Ci)�

d(X� Z�) � d(X�Ci) � d(Z�� Cp) � d(X� Z�) + d(X�Ci)�

50

where d(Zm � Cp) can be calculated off line, m=1,2 and 3, p=1,2,...,N. Z� is set to origin and

codewords are sorted in ascending order of d(Z�� Cp). Three tables A�, A� and A� are built

to store ascending ordered values of d(Z�� Cp), d(Z�� Cp) and d(Z�� Cp), respectively. Two

index tables B� and B� are used to store the codeword indices corresponding to the ordered

d(Z�� Cp) and d(Z� � Cp) tables. In the encoding phase, only the codewords CP satisfying these

three inequalities simultaneously are needed to compute the distortion, i.e., the final subset of

codewords is

fCp : l� � B�(p) � l�� n� � B�(p) � n��m� � p � m�g�

where m� is the index of the first element of A� whose value exceeds d(X� Z�) � d(X�Ci) and

m� is the the index of the last element of A� whose value is smaller than d(X� Z�) + d(X�Ci);

n� is the index of the first element of A� whose value exceeds d(X� Z�) � d(X�Ci) and n� is

the the index of the last element of A� whose value is smaller than d(X� Z�) +d(X�Ci); l� is the

index of the first element of A� whose value exceeds d(X� Z�)� d(X�Ci) and l� is the index of

the last element of A� whose value is smaller than d(X� Z�) + d(X�Ci). If any codeword cannot

be eliminated using these three inequalities, then calculate the distortion of d(X�Cp) and update

the current nearest codeword and the current minimum distortion.

3.1.13 Fast MMSE Encoding Technique

The fast minimum mean squared error (MMSE) encoding technique (Soleymani & Morgera,

1989) assumes codewords Ci, i = �� �� ����N, partition the space Rk into N regions Si, i =

�� �� ����N, such that

Si = fX :
kX
p=�

(xp � cpi)� �
kX
p=�

(xp � cpj)�� all jg�

For each codeword Ci, let ri =
p
Di where

Di = maxX�Si

kX
p=�

(xp � c
p
i)�� (����)

For any given input data vector X, if

jxp � c
p
i j � ri� (����)

51

for some p
f�� �� ���� kg, then Ci will not be the nearest codeword to X. Combine Eq. 3.37 with

the hypercube approach such that the codeword Ci can be rejected if

jxp � c
p
i j � r

�
i� (����)

where r
�
i = minfri�

p
Dming andDmin is the current minimum distortion found before checking

the codeword Ci.

From the training data, calculate ri for each codeword Ci, i = �� �� ����Nand sort ri in increasing

order and also sort the codebook accordingly. Hence, after finding some codeword Cl such that

kX
p=�

(xp � c
p
l)� = Dmin � r�l � (����)

there is no need to compare
p
Dmin with ri for i � l. The fast MMSE encoding technique can

be depicted as follows:

Step 1: Set i = � and j = �.

Step 2: While i � N (N is the number of codewords), calculate step 3 to step 6.

Step 3: Calculate eij = jxj � cjij.

Step 4: If eij � ri, set i = i + �, j = � and go to step 2; otherwise, if j � k (k is the number of

dimensions), set j = j + � and go to step 3.

Step 5: Calculate dm = r�i , d = ei� � ei�. Set j = �.

Step 6: If j � k, set m = i + �, Dmin = d and go to step 7. Calculate d = d + eij � eij, if

d � dm, set i = i + � and go to step 2; otherwise, set j = j + � and go to step 6.

Step 7: Set j = �. While m � N, calculate step 8 to step 11.

Step 8: Calculate emj = jxj � cjmj.

Step 9: If emj �
p
Dmin, set m = m + � and go to step 7. otherwise, if j � k, set j = j + � and

go to step 8.

Step 10: Calculate d = em� � em�. Set j = �.

52

Step 11: Calculate d = d + emj � emj, if d � Dmin, set m = m + � and go to step 7; otherwise,

set j = j + � and go to step 11.

Step 12: Set Dmin = d, m = m + �, record Cm as the current nearest codeword to vector X and

go to step 7.

In this algorithm, the hypercube approach and PDS are combined with ri from step 1 to step 6;

the hypercube approach and PDS are also combined with the current minimum distortionDmin

from step 7 to step 12. The main idea of this algorithm is to create r i from the training data and

sort ri in increasing order.

In addition, ti, the maximum dimension-distortion for the input data vector in S i, can be used

instead of ri, defined as

ti = maxX�Simaxpjxp � cpi j� (����)

Since the maximum dimension-distortion is less than the square-root of the total distortion, using

ti instead of ri may result in a more efficient algorithm. Note that the fast MMSE encoding

technique is an approximate search algorithm and occasional encoding errors will happen in the

nearest neighbour assignment. In order to reduce the encoding errors, a small value added to ri

or ti is needed.

3.1.14 Projection Method

For the projection method of codeword search for vector quantization (Cheng et al., 1984),

Eq. 3.41 and Eq. 3.42 are computed from the training data.

Tij� = maxX�Cjx
i� (����)

Tij� = minX�Cjx
i� (����)

Sort Tijm in the increasing order for each dimension, where i = �� �� ���� k, j = �� �� ����N and

m = �or�. There are �N � � contiguous intervals for each dimension. For each dimension,

create a table where the lth column indicates whether cl is a candidate and the pth row indicates

that xi is located in the pth interval. The entry of this table can be 1 or 0 to express candidate or

53

non-candidate. It can also be the index of the codevector for the candidate. In the encoding stage,

the interval for each dimension is determined first. The possible candidates are the candidates for

the intersection of these k tables given the row for every table. This method is an approximate

search algorithm. Occasional encoding errors will occur in the codeword search. In order to

reduce the encoding error, Eq. 3.41 and Eq. 3.42 can be modified as follows:

Tij� = maxX�Cjx
i + �j�� (����)

Tij� = minX�Cjx
i � �j�� (����)

where �j� and �j� are small values and j = �� �� ���� k. The values of �j� and �j� can be decided

from experiments.

3.2 Improved Absolute Error Inequality Criterion

The improved absolute error inequality criterion (IAEI) (Pan et al., 1995a; Pan et al., 1995b)

is a special case of the bound for Minkowski metric (Pan et al., 1996b). IAEI criterion can be

depicted as follows:

if

sX
i=�

jxi � cijj �
p
hDmin� (����)

then

kX
i=�

(xi � cij)
� � Dmin� (����)

where s � h � k.

The IAEI criterion can also be proved as follows:

Let ai = jxi � cij j and s � h � k. Then

� �
hX
i=�

(ai�
hX
j=�

aj

h
)� =

hX
i=�

a�i�
�

h

hX
i=�

ai

hX
j=�

aj+
hX
i=�

(
hX
j=�

aj

h
)� =

hX
i=�

a�i�
�

h
(

hX
i=�

ai)�� (����)

Hence
kX
i=�

a�i �
hX
i=�

a�i �
�

h
(

hX
i=�

ai)
� � �

h
(

sX
i=�

ai)
�� (����)

Hence if
Ps

i=� ai �
p
hDmin,

54

then Eq. 3.48 becomes
Pk

i=� a
�
i � �

h
(
p
hDmin)� = Dmin.

The main difference between the IAEI criterion and the AEI criterion is that s and h are used

instead of k in Eq. 3.45. Since h can be adapted with s which can be set to a smaller value than

k, the IAEI criterion provides a tighter bound than the AEI criterion.

3.2.1 Fast Algorithms Using IAEI

The fast algorithm is generated using the codeword with the minimum value of the maximum

dimension-distortion as the tentative match and applying the improved absolute error inequality

(IAEI) criterion and partial distortion search (PDS). This new fast codeword searching algorithm

is described as follows :

Step 1: For the given test vector X and codebook C, calculate the absolute error eij = jxi � cijj,
i = �� �� ���� k, j = �� �� ����N.

Step 2: Find the maximum component of each error vector, that is to find maxieij for each

codeword. For convenience, interchange the maximum component of error vector with

e�j.

Step 3: Find the minimum neighbour l =arg minjmaxieij.

Step 4: Find the square Euclidean distortion Dmin =
Pk

i=� e
�
il.

Step 5: If
Ps

i=� eij �
p
hDmin, then cj will not be the nearest neighbour toX, where s � h � k.

Use the PDS to delete the rest of the codewords.

In this new fast codeword search algorithm, for s = h = �, it is the same as the hypercube

approach in step 5 of the minimax method. By adapting the values of s and h from 1 to k, this

algorithm eliminates a very large number of multiplications.

3.2.2 Minimax method with AEI approach

In this section, the new fast codeword search algorithm using IAEI described in the previous

sub-section is compared with the minimax method as well as the minimax method including

the absolute error inequality criterion. The approach of the minimax method including AEI is

described as follows :

55

Step 1: For the given test vector X and codebook C, calculate the absolute error eij = jxi � cijj,
i = �� �� ���� k, j = �� �� ����N.

Step 2: Find the maximum component of each error vector, that is to find maxieij for each

codeword. For convenience, interchange the maximum component of error vector with

e�j.

Step 3: Find the minimum neighbour l =arg minjmaxieij.

Step 4: Find the square Euclidean distortion Dmin =
Pk

i=� e
�
il.

Step 5: Use the hypercube approach, i.e., if maxieij �
p
Dmin, then delete the codeword cj.

Use the AEI criterion, i.e., if
Ps

i=� jxi � cijj �
p
kDmin, then cj will not be the nearest

neighbour to X, where s � k. Use the PDS to delete the rest of the codewords. Here the

AEI criterion is applied by adapting s from 1 to k.

3.2.3 Experiments

The test materials for these experiments consisted of two hundred words recorded from one male

speaker. The speech was sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients

with inverse variance weighting were computed over 20 ms-wide frames with a 5 ms frame

shift. The purpose of inverse variance weighting is to equalize the importance of every cepstrum

coefficient. A total of 20,030 analyzed frames were used in the codeword searching experiments.

Codebooks of size 64, 256 and 1,024 codewords with Euclidean distortion measure are used in

these experiments.

Experiments were carried out to test the performance of the minimax method; the minimax

method with absolute error inequality elimination rule; and the new fast search algorithm

described above. The bounds for IAEI were separated into four sections. These four sections

were to set h = � to check the first dimension-difference, h = � for the sum from the first

dimension-difference to the fourth, h = � for the sum from the first dimension-difference to the

ninth and h = �� for the sum of all dimension-differences. The choice of h = � and h = � allows

the expression
p
hDmin in the elimination test (Eq. 3.45) to be evaluated using only additions,

once
p
Dmin has been computed, since

p
�Dmin = 2

p
Dmin and

p
�Dmin = 3

p
Dmin.

Fig. 3.5 illustrates the experimental results for the elimination probability of IAEI at each

56

feature dimension for 16, 64, 256 and 1024 codewords, respectively. For 1024 codewords,

92.7% of impossible codewords matches will be eliminated by using the IAEI criterion in the

first dimension. Only 0.65% of codewords cannot be eliminated using the IAEI criterion. The

numbers of eliminations at each dimension for 8, 32, 128 and 512 codewords are shown in

Table 3.1. No codeword can be eliminated in the second or fifth dimension and only a few

codewords are eliminated in the tenth dimension because the bounds of the IAEI criterion are

separated into four sections and h is set to 1, 4, 9 and 13. If h is set to i at the ith dimension, then

significant multiplication overhead is needed in the computation of
p
hDmin. The statistics of

the elimination probability for IAEI criterion at each feature dimension for 16, 64, 256 and 1024

codewords, respectively, is depicted in Fig. 3.6 where h is set to i at the ith dimension. Table 3.2

shows the number of eliminations at each dimension for 8, 32, 128 and 512 codewords, where h

is also set to i at the ith dimension. The elimination efficiency for h set to i at the ith dimension

is better than h set to 1, 4, 9 and 13 but significant multiplication overhead is needed if h is set

to i at the ith dimension. Experimental data relating to computational complexity are depicted

number of codewords
dimension 8 32 128 512

1 36,876 336,053 1,911,039 9,023,539
2 0 0 0 0
3 3,450 13,445 34,107 73,228
4 13,800 46,887 112,603 228,730
5 0 0 0 0
6 1,057 5,866 14,536 32,387
7 4,530 20,270 53,834 122,545
8 9,355 32,694 81,887 175,040
9 13,071 36,575 86,146 172,657
10 181 1,074 3,507 7,646
11 3,865 12,788 34,829 71,259
12 8,355 21,331 50,946 99,451
13 10,533 26,944 56,529 94,848

Table 3.1: Number of eliminations at each dimension (h is set to 1, 4, 9 and 13)

in Tables 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 and 3.10. Table 3.10 shows that this new fast

codeword search algorithm saves more than ��% and ��% multiplication operations compared

with the minimax method and the minimax method with AEI criterion respectively for 1,024

codewords. Although several digital signal processing chips exist that can implement addition

57

number of codewords
dimension 8 32 128 512

1 36,876 336,053 1,911,039 9,023,539
2 9,025 32,074 75,067 154,884
3 7,246 21,708 49,707 99,302
4 5,364 19,394 48,129 97,968
5 4,521 16,657 42,762 94,449
6 5,605 19,125 47,840 102,112
7 4,731 18,720 48,622 106,165
8 5,035 17,731 44,523 94,010
9 6,486 17,634 41,062 81,403
10 5,831 15,699 38,525 75,705
11 5,299 14,786 35,937 68,688
12 5,245 12,760 30,023 56,990
13 5,446 14,530 31,330 52,575

Table 3.2: Number of eliminations at each dimension (h is set to i for the ith dimension)

and multiplication in approximately the same time, multipliers take up much larger chip areas

than adders. Also since the multiplication operation is more expensive than the comparison and

addition operations for general processors (Leibson, 1993), this new fast algorithm is better

than the other two algorithms.

This fast algorithm is implemented by using the IAEI, setting h to 1, 4, 9 and 13, adapting and

comparing Eq. 3.45 for s from 1 to 13. Another possible approach is to adapt s from 1 to 13

but only compare Eq. 3.45 at s = 1, 4, 9 and 13. As shown in Table 3.11, this approach will

decrease the number of comparisons as well as the total number of operations at the expense of

more additions. In terms of the total number of mathematical operations, this approach is a little

better than the minimax method but drastically reduces the number of multiplications for 1024

codewords.

A fast codeword search algorithm must include two key elements: a good tentative matching

approach and a powerful elimination criterion. The IAEI is a powerful elimination criterion.

An efficient algorithm can therefore be implemented by combining IAEI with another tentative

matching approach, such as the previous vector candidate (Pan, 1988; Pan et al., 1996c; Chen

& Pan, 1989).

58

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 1.023 2,833 2,973 6,829

Minimax AEI 721 3,675 3,815 8,211
IAEI Euclidean 700 3,480 3,679 7,859

Table 3.3: Computational complexity of codeword search for 8 codewords on Euclidean metric

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 1,575 5,535 5,515 12,625

Minimax AEI 985 7,084 7,064 15,133
IAEI Euclidean 932 6,662 6,708 14,302

Table 3.4: Computational complexity of codeword search for 16 codewords on Euclidean metric

3.3 Improvement in Partial Distortion Search

The PDS algorithm (Bei & Gray, 1985) has been shown to be an efficient and simple codeword

search algorithm. This method is always used in the last stage when the other elimination

criterion cannot delete impossible codeword matching. As shown previously in section 3.1,

subsection 3.1.1, this reduces to (k� s) multiplications and �(k� s) additions at the expense of

s comparisons. This algorithm is suitable for computer architectures in which the complexity of

comparisons is negligible with respect to that of multiplications. However, PDS is less suited to

processor architectures in which comparisons are computationally expensive. An improvement

of the partial distortion search algorithm using dynamic programming (DP) procedure (Fissore

et al., 1993) is called DPPDS. Here a new improved PDS method (Pan et al., 1994b) is

proposed by determining which dimension is suitable to start inserting comparisons for every

codeword assessed from the training data.

Let r be the cost ratio of the comparison computation time to dimension-distortion computation

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 2,037 10,390 10,049 22,476

Minimax AEI 1,130 12,673 12,332 26,135
IAEI Euclidean 1,045 11,921 11,650 24,616

Table 3.5: Computational complexity of codeword search for 32 codewords on Euclidean metric

59

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 2,865 20,035 19,053 41,953

Minimax AEI 1,400 23,581 22,600 47,581
IAEI Euclidean 1,256 22,262 21,353 44,871

Table 3.6: Computational complexity of codeword search for 64 codewords on Euclidean metric

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 3,827 38,750 36,487 79,064

Minimax AEI 1,644 43,926 41,663 87,233
IAEI Euclidean 1,422 41,765 39,577 82,764

Table 3.7: Computational complexity of codeword search for 128 codewords on Euclidean
metric

time. The improved partial distortion search (improved PDS) algorithm can be described as

follows:

Step 1: Set l = �.

Step 2: Set i = � and dmin = �.

Step 3: Calculate the distortion d for the ith codeword to the lth training vector. Compute the

saving dimension-distortion number M i
jl and the induced comparison number Ci

jl at the

insertion from the jth dimension for the ith codeword. Set dmin = Min(dmin� d).

Step 4: If i � N, set i = i + � and go to step 3. Here N is the number of codewords.

Step 5: If l � T, set l = l + � and go to step 2; otherwise, set cij = T��
PT

l=� C
i
jl and mi

j =

T��
PT

l=�M
i
jl. Here l = 1 to T and T is the number of training vectors. The comparison

starts from I(i) for the ith codeword if I(i) = argMaxj(mi
j � rcij).

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 5,088 75,640 70,813 151,541

Minimax AEI 1,901 83,135 78,308 163,344
IAEI Euclidean 1,584 79,700 74,949 156,233

Table 3.8: Computational complexity of codeword search for 256 codewords on Euclidean
metric

60

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 6,492 148,517 138,562 293,571

Minimax AEI 2,115 158,799 148,844 309,758
IAEI Euclidean 1,708 153,730 143,852 299,290

Table 3.9: Computational complexity of codeword search for 512 codewords on Euclidean
metric

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Minimax 7,569 292,892 272,682 573,143

Minimax AEI 2,133 305,783 285,573 593,489
IAEI Euclidean 1,671 299,002 278,865 579,538

Table 3.10: Computational complexity of codeword search for 1024 codewords on Euclidean
metric

A more efficient algorithm can be developed by combining this improved PDS algorithm with

the dynamic programming in the PDS method. It is referred to as improved DPPDS. The

difference between the improved DPPDS and the DPPDS algorithm (Fissore et al., 1993)

is that in the improved algorithm the dimensions at which comparisons are performed are

determined separately for each codeword instead of being the same for all the codewords.

Assume Sij is the number of successful comparisons for the ith codeword at position j for T

data vectors. Hence the number of dimension-distortion computations for inserting comparison

operations in position j for the ith codeword can be expressed as

Ni
d(j� k) = T�j+ (T � Sij)(k� j)� (����)

codeword no. mul.(
���) cmp.(
���) add.(
���) sum(
���)
8 700 2,796 3,720 7,216
16 932 5,443 6,795 13,170
32 1,045 10,221 11,805 23,071
64 1,256 19,711 21,613 42,580

128 1,422 38,205 39,975 79,602
256 1,584 74,784 75,548 151,916
512 1,708 147,301 144,707 293,716
1024 1,671 291,360 279,969 573,000

Table 3.11: Computational complexity for comparison inserted only in s =1, 4, 9 and 13

61

where k is the number of dimensions, i=1,2,...,N, N is the number of codewords.

If the previous comparison is performed in position j, the number of dimension-distortion

computations for inserting comparisons in position t for the ith codeword is as follows:

Ni
d(j� t) = T�j + (T � Sij)(t� j) + (T � Sit)(k � t)� (����)

The computational advantage for the ith codeword is

V i(j� t) = [Ni
d(j� k) �Ni

d(j� t)]� r(T � Sit) = (Sit � Sij)(k � t)� r(T� Sit)� (����)

The dynamic programming technique and Eq. 3.51 are applied to Eq. 3.52, i.e., find suitable

inserting positions j to maximize Eq. 3.52.

Ai(t) = Ai(j) + Vi(j� t)� (����)

where t = �� �� ���� k, j � t.

The speech databases used in training and test experiments consist of one hundred words recorded

from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-

dimensional cepstrum coefficients are computed over 20 ms-wide frames with a 5 ms frame shift.

The first data set recorded from two speakers is used to generate the codebook. The inserting

dimension of comparison to every codeword for the improved PDS algorithm is computed from

the codebook using the second data set recorded from two other speakers. The third data set

recorded from the fifth speaker is used to test the performance of these approaches.

The 12-dimensional cepstrum coefficients with variance weighting and 256 codewords are used

in the experiment of PDS, improved PDS, improved DPPDS and dynamic programming in

PDS referred as DPPDS. The purpose of variance weighting is to equalize the importance of

every cepstrum coefficient. The experimental results are shown in Table 3.12. The performance

is compared with the standard PDS. These results show that the performance of the improved

PDS is almost the same as using DP to improve the performance of PDS. General speaking, if

the cost ratio of the computer architecture defined as the comparison computation time divided

by the dimension distortion computation time is smaller or equal to 1.2, it is better to use the

62

improved PDS than DP in PDS for the cepstrum coefficients with variance weighting. The

improved DPPDS is superior to the other algorithms.

cost ratio DP in PDS improved PDS improved DPPDS
0.1 0 % 0.82 % 0.95%
0.2 0.5 % 2.2 % 4.6%
0.3 2.9 % 4.0 % 5.5%
0.4 5.7 % 5.8 % 8.2%
0.5 7.9 % 7.9 % 10.9%
0.6 10.1 % 10.0 % 13.3%
0.7 12.4 % 12.1 % 15.7%
0.8 14.5 % 14.2 % 17.8%
0.9 16.3 % 16.1 % 19.7%
1.0 17.3 % 18.1 % 21.7%
1.1 19.1 % 19.8 % 23.5%
1.2 20.8 % 21.5 % 25.2%
1.3 24.5 % 23.1 % 26.7%
1.4 26.2 % 24.6 % 27.8%
1.5 27.7 % 26.0 % 29.2%
1.6 29.1 % 27.3 % 31.0%
1.7 30.4 % 28.6 % 32.3%
1.8 31.6 % 29.7 % 33.6%
1.9 32.7 % 30.9 % 34.8%
2.0 33.8 % 31.7 % 35.9%
2.5 38.1 % 36.8% 40.7%
3.0 42.6 % 40.5 % 44.5%
3.5 45.9 % 44.5% 47.5%
4.0 48.5 % 47.9 % 49.9%
4.5 50.6 % 50.7% 52.0%

Table 3.12: The performance of DP in PDS, improved PDS and improved DPPDS (percentage
improvement on standard PDS)

3.4 Improvement in Extended Partial Distortion Search

The extended partial distortion search (EPDS) algorithm (Chen & Pan, 1989; Pan, 1988) is

a modified version of PDS which optimizes the calculation in terms of the number of multi-

plications for a minor overhead in data sorting. It can be used in vector encoding and word

recognition. The EPDS algorithm for the frame-distortion accumulation in word recognition is

stated as follows:

63

Step 1: Let Lj = 1 and calculate the distortion Dfj between the first feature frame X� and the

jth codebook, for j = 1 to V. Here V is the number of codebooks and Lj is the Ljth frame

for the jth codebook.

Step 2: Find Dfs = MinjDfj and s = argMinjDfj.

Step 3: If Ls = T, then set the sth codebook to be the best match and terminate the program;

otherwise, set Ls = Ls + 1, calculate the encoding distortion of Xls frame by using the sth

codebook and add it to Dfs, and go to step 2. Here T is the number of frames.

Assume a recognition system including 10 words (10 codebooks) and one test word including 9

frames. As shown in Table 3.13, Cbi is the ith codebook (word) and fi is the ith frame of the

test word. The value of each entry is the accumulated frame-distortions for the codebook. The

underline used in this example means the last calculated frame-distortion for the corresponding

codebook. The calculation of many frame-distortions can be omitted. Hence theEPDS algorithm

is very suitable for word recognition. For vector encoding, this computes the dimension-

Cb� Cb� Cb� Cb� Cb� Cb� Cb
 Cb� Cb� Cb��
f� 8 7 9 6 5 11 2 2 4 5
f� 15 15 14 12 18 17 3 6 8 10
f� 22 �� �� 17 �� 22 6 11 12 11
f� �� 35 29 22 32 �� 9 17 18 21
f� 26 36 32 �� 35 32 13 19 �� ��

f� 30 44 34 37 39 38 17 �� 28 31
f
 36 47 38 39 42 40 19 26 31 33
f� 38 53 41 43 47 44 20 27 33 35
f� 39 58 43 46 51 47 �� 29 36 38

Table 3.13: Diagram of distortion calculation for EPDS in word recognition

distortion for the first dimension of the input vector to the first dimension of all codewords,

then sorts the dimension-distortion to obtain the nearest codeword. The distortion for the input

vector to the nearest codeword in the second dimension is calculated and added to the previous

distortion of the same codeword. The dimension-distortions are sorted again to obtain the

nearest codeword. The procedure continues until the last dimension-distortion is calculated and

the distortion is smallest.

Assume the number of dimensions and the number of codewords are 10 and 8, respectively.

64

Table 3.14 illustrates an example of EPDS algorithm in vector encoding. The value of each

entry is the accumulated dimension-distortions for the codeword. The underline used in this

example means the last calculated dimension-distortion for the corresponding codeword. The

calculation of many dimension-distortions can be omitted. The EPDS algorithm is an optimal

PDS algorithm in the sense of reducing the number of multiplications. The detailed algorithm

of the EPDS in vector encoding is described as follows:

Step 1: Let li = 1 and calculate the distortion Di = (x� � ci�)� between the first dimension x�

of the input vector X and the first dimension ci� of the ith codeword Ci, for i = 1 to N.

Here N is the number of codewords and li is the lith dimension for the ith codeword.

Step 2: Find Ds = MiniDi and s = argMiniDi.

Step 3: If ls = k, then set the sth codeword to be the best match and terminate the program;

otherwise, set ls = ls + 1, calculate the encoding distortion of xls by using the sth

codeword and add it to Ds, and go to step 2. Here k is the dimension of the input vector

and codewords.

C� C� C� C� C� C� C
 C�

x� 2 3 2 1 5 4 8 7
x� 6 5 4 2 8 7 12 12
x� 7 9 11 4 12 9 �� ��

x� 9 11 13 5 �� 13 18 19
x� �� 13 �� 6 18 �� 21 22
x� 17 �� 21 8 20 16 25 23
x
 18 16 22 10 21 17 27 24
x� 20 17 25 11 23 18 28 27
x� 22 18 28 12 24 20 30 29
x�� 23 19 30 �� 26 21 35 32

Table 3.14: Diagram of distortion calculation for EPDS in vector encoding

The EPDS algorithm is suitable for computer architectures in which the complexity of com-

parisons is negligible with respect to that of the multiplications, such as Intel 80486 processor.

However, EPDS is less suited to some DSP processors, such as the TMS320 series of processors

in which comparisons are computationally expensive. An improvement of the extended partial

distortion search approach is proposed here. It involves inserting the sorting operation from

65

a suitable dimension to minimize the EPDS search cost for any computer architecture. Here

sorting means that the comparisons are performed to find the codeword which has the minimum

distortion at the present stage.

In this improved algorithm, the sorting of the accumulated distortions to find the minimum D s

is performed only after the first j dimensions’ distortion terms have been accumulated for every

codeword, where j is chosen to minimize the total computation. Let r be the cost ratio of the sort-

ing time to dimension-distortion computation time. To insert the sorting to dimension-distortion

accumulation at the jth dimension, the cost of sorting is m jr, but there is a decrease of N�mj

dimension-distortion computations. Here N is the number of codewords and m j is the average

number of codewords whose distortion computation cannot be omitted at the sorting insertion

of the jth dimension. From the above description, the following two equations are satisfied.

mj � �� j = �� ���� k� � (����)

mj � mj+�� j = �� ���� k� � (����)

LetA(j) be the global advantage function of inserting the sorting from the jth dimension onwards.

The advantage can be expressed in terms of N, k, mj and r as follows.

A(k) = � (����)

A(j) = A(j + �) + V(j)� j = �� ���� k� � (����)

where V(j) is the local advantage due to sorting at the jth dimension, given by

V(j) = (N�mj)�mjr = N� (r + �)mj (����)

From Eq. 3.54 and 3.57,

V(i) � V(j) if i � j (����)

Hence there is some t (� � t � k) such that

66

V(j)� � for j = t� ���� k� � (����)

V(j)� � for j = �� ���� t� � (����)

and so

A(t) � A(j)� j = �� ���� k� t �= j (����)

This value t is the optimal sorting insertion dimension for the given value of the cost ratio r.

From Eq. 3.57, 3.59 and 3.60, the cost interval rt corresponding to the sorting insertion

dimension t can be derived.

� � rt � N

mt

� �� t = � (����)

N

mt��
� � � rt � N

mt

� �� t = �� ���� k� � (����)

From the training data, calculate the cost interval rj, j = 1 to k� �. The optimal sorting insertion

is from the jth dimension if the cost ratio of the computer architecture lies in the cost interval

rj. For the conventional exhaustive full search method, Nk dimension-distortions are computed

corresponding to the computation time of Nk multiplications,N(�k� �) additions, and (N� �)

comparisons. One dimension-distortion computation involves approximately the computation

time of one multiplication and two additions. The sorting time is N � � comparisons for the

basic sorting method. The computation time of EPDS and improved EPDS are Nk� A(�) and

Nk�A(t). The performance of EPDS, improved EPDS, and the improvements of the improved

EPDS are as follows.

EPDS performance =
Nk� A(�)

Nk
(����)

Improved EPDS performance =
Nk �A(t)

Nk
(����)

Improvement =
A(t)� A(�)
Nk� A(�)

(����)

67

The speech databases used in training and test experiments consist of one hundred words recorded

from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-

dimensional cepstrum coefficients are computed over 20 ms-wide frames with a 5 ms frame

shift. The first data set recorded from two speakers is used to generate the codebook. Cost

intervals for the improved EPDS algorithm are computed from the codebook using the second

data set recorded from two other speakers. The third data set recorded from the fifth speaker is

used to test the performance of these approaches.

Table 3.15 illustrates cost intervals of 16 codewords and 128 codewords. From these cost

intervals and the cost ratio of sorting time to dimension-distortion computation time for a given

computer architecture, the dimension of sorting insertion can be decided. For example, the

inserting should be from the third dimension if the cost ratio of the computer architecture is 6

for 128 codewords. The performance comparison of improved EPDS and EPDS is shown in

Table 3.16 and Table 3.17. These efficiencies can be calculated from Eq. 3.64, 3.65 and 3.64

by using the maximum cost ratio from Table 3.15. For 128 codewords, if the cost ratio is 7.55,

the performance of EPDS is 67%, but that of improved EPDS will be 50% for inserting from

the third dimension, it improves 26%. This technique can also be applied to frame-distortion

accumulation in a word recognition system.

inserting cost intervals of cost intervals of 128
dimension 16 codewords 128 codewords

1 [0.00 , 1.56] [0.00 , 2.03]
2 [1.56 , 3.29] [2.03 , 4.99]
3 [3.29 , 4.32] [4.99 , 7.55]
4 [4.32 , 6.12] [7.55 , 13.4]
5 [6.12 , 7.43] [13.4 , 19.5]
6 [7.43 , 8.92] [19.5 , 29.3]
7 [8.92 , 10.1] [29.3 , 39.0]
8 [10.1 , 11.6] [39.0 , 52.9]
9 [11.6 , 12.6] [52.9 , 67.7]
10 [12.6 , 13.4] [67.7 , 84.2]
11 [13.4 , 14.3] [84.2 , 104]

Table 3.15: Cost intervals of 16 codewords and 128 codewords

68

inserting EPDS improved EPDS improvement
dimension performance performance

1 41 % 41 % 0 %
2 63 % 58 % 8 %
3 76 % 66 % 13 %
4 99 % 77 % 22 %
5 116 % 84 % 28 %
6 135 % 90 % 34 %
7 150 % 93 % 38 %
8 170 % 97 % 43 %
9 182 % 98 % 46 %

10 192 % 99 % 48 %
11 203 % 100 % 51 %

Table 3.16: The performance of 16 codewords

inserting EPDS improved EPDS improvement
dimension performance performance

1 29 % 29 % 0 %
2 49 % 42 % 15 %
3 67 % 50 % 26 %
4 107 % 60 % 44 %
5 148 % 68 % 54 %
6 215 % 78 % 64 %
7 281 % 84 % 70 %
8 376 % 90 % 76 %
9 478 % 95 % 80 %

10 590 % 98 % 83 %
11 724 % 100 % 86 %

Table 3.17: The performance of 128 codewords

3.5 Fast Algorithm for Approximate Search

Multiplication operations are far more expensive compared with comparison and addition oper-

ations for general processors (Leibson, 1993). In this section, an efficient approximate search

algorithm which can dramatically reduce the number of multiplication operations is presented.

This algorithm is based on the modification of the Chebyshev metric or Manhattan metric.

Assume the training data and codewords are Xp = fx�p� x�p� ���� xkpg and Ci = fc�i � c�i � ���� ckig,

respectively, p = �� �� ���� T, i = �� �� ����N. T, k and N are the total number of training data

69

vectors, the number of dimensions and the number of codewords, respectively. The distortion

between data vector Xm and codeword Cl can be expressed as follows:

d(l� p) =
kX
j=�

(xjp � cjl)
��

The codeword with the minimum value of the maximum dimension-distortion is

np = argminimaxjjxjp � cjij�

and

d(np� p) =
kX
j=�

(xjp � cjn)��

Separate all codewords Ci into two sets for every training data vectors Xp.

First set : Ap = fijd(i� p) � d(np� p)g�

Second set : Bp = fijd(i� p) � d(np� p)g�

Calculate the parameter rate using Eq. 3.67 and 3.68

ratep =
maxl�Bpmaxjjcjl � xjpj

maxjjcjnp � xjpj
� (����)

for each training data vector Xp.

rate = maxpratep + �� (����)

where � is a small value. After the parameter rate is obtained, a new codeword elimination

criterion is developed as follows:

if maxjjxjm � cjlj � rate�maxjjxjm � cjnp j� (����)

then

kX
j=�

(xjm � c
j
l)
� �

kX
j=�

(xjm � cjnp)�� (����)

where np = argminimaxjjxjm � c
j
ij.

70

method mul. cmp. add. sum average distortion
minimax 502,231 3,376,691 3,587,363 7,466,285 0.940086
rate 1.0 0 3,099,888 3,129,984 6,229,872 0.959554
rate 1.1 97,216 3,332,328 3,189,985 6,619,529 0.945844
rate 1.2 142,396 3,345,996 3,230,290 6,718,682 0.941630
rate 1.3 178,404 3,355,566 3,262,337 6,796,307 0.940600
rate 1.4 209,539 3,362,509 3,289,937 6,861,985 0.940210
rate 1.5 237,772 3,367,516 3,314,977 6,920,265 0.940139
rate 1.6 262,278 3,371,061 3,336,813 6,970,152 0.940096
rate 1.7 282,651 3,373,216 3,355,062 7,010,929 0.940093
rate 1.8 301,284 3,374,809 3,371,852 7,047,945 0.940088
rate 1.9 316,990 3,375,730 3,386,098 7,078,818 0.940086
rate 2.0 330,482 3,376,189 3,398,439 7,105,110 0.940086
rate 2.1 341,306 3,376,384 3,408,397 7,126,087 0.940086
rate 2.2 352,263 3,376,497 3,418,520 7,147,280 0.940086
rate 2.3 361,709 3,376,520 3,427,279 7,165,508 0.940086
rate 2.4 370,395 3,376,539 3,435,332 7,182,266 0.940086
rate 2.5 378,380 3,376,542 3,442,745 7,197,667 0.940086

Table 3.18: Performance comparison of minimax method and fast approximate algorithm for 8
codewords

The efficiency of the codeword search depends on the value of the parameter rate. The smaller

value the rate is, the more efficient this algorithm gets. In the extreme, rate= 1, it is Chebyshev

metric or Manhattan metric. For this metric, the number of multiplications, comparisons and

additions are 0, N�(k � �) + (N � �) and N�k, respectively. Parameter rate can be reduced

to a smaller value if the increased distortion is small. The test materials for these experiments

consisted of two hundred words recorded from two male speakers. The speech was sampled

at a rate of 16 kHz and 13-dimensional cepstrum coefficients were computed over 20 ms-wide

frames with a 5 ms frame shift. A total of 20,030 analyzed frames used as the training data were

recorded from one male speaker. The test data includes 30,096 analyzed frames recorded from

the other speaker. Codebooks of size 8, 256 and 1,024 codewords with Euclidean distortion

measure are used in these experiments.

Tables 3.18, 3.19 and 3.20 illustrate the performance of the minimax method and this new

efficient approximate search algorithm with different rate. The training rates are 1.874833,

2.028345 and 2.231797 for 8, 256 and 1024 codewords, respectively. Here � is set to 0. The

average distortion is the same as the minimax method if the training rates are used. Obviously,

71

method mul. cmp. add. sum average distortion
minimax 2,710,965 109,599,202 102,346,066 214,656,233 0.346460
rate 1.0 0 100,129,392 100,159,488 200,288,880 0.388426
rate 1.1 428,683 107,992,358 10,0517,026 208,938,067 0.364018
rate 1.2 770,084 108,202,247 10,0818,487 209,790,818 0.353663
rate 1.3 1,087,047 108,424,879 101,091,793 210,603,719 0.349195
rate 1.4 1,388,239 108,647,096 101,344,105 211,379,440 0.347424
rate 1.5 1,675,786 108,862,034 101,576,736 212,114,556 0.346771
rate 1.6 1,932,988 109,051,837 101,777,160 212,761,985 0.346557
rate 1.7 2,157,441 109,213,439 101,945,392 213,316,272 0.346482
rate 1.8 2,337,348 109,338,814 102,075,174 213,751,336 0.346468
rate 1.9 2,471,616 109,429,695 102,168,902 214,070,213 0.346461
rate 2.0 2,563,560 109,490,166 102,231,336 214,285,062 0.346460
rate 2.1 2,619,365 109,525,849 102,268,176 214,413,390 0.346460
rate 2.2 2,650,193 109,544,662 102,288,120 214,482,975 0.346460
rate 2.3 2,665,490 109,553,760 102,297,907 214,517,157 0.346460
rate 2.4 2,672,197 109,557,447 102,302,218 214,531,862 0.346460
rate 2.5 2,674,831 109,558,755 102,303,955 214,537,541 0.346460

Table 3.19: Performance comparison of minimax method and fast approximate algorithm for
256 codewords

the parameter rate can be set to a small value if the codebook size is small. For 8 codewords,

the number of multiplications will be reduced by 80% with only 0.6% increased distortion if the

rate is 1.1.

3.6 Efficient Search Algorithm for Image Coding

The mean-distance-ordered search (MPS) algorithm (Ra & Kim, 1993) takes advantage of the

fact that the nearest codeword is usually in the neighbourhood of the minimum squared mean

distance. The basic inequality of this approach is as follows:

if j
kX
i=�

xi �
kX
i=�

cijj �
p
kDmin� (����)

then

kX
i=�

(xi � cij)
� � Dmin�

This means Cj will not be the nearest neighbour to X if Eq. 3.71 is satisfied. In the MPS algo-

rithm, the sum of all dimensions for each codeword is calculated first and these values are sorted

72

method mul. cmp. add. sum average distortion
minimax 6,457,314 436,016,497 405,649,633 848,123,444 0.271357
rate 1.0 0 400,607,856 400,637,952 801,245,808 0.310621
rate 1.1 577,887 431,680,772 401,129,451 833,388,110 0.288017
rate 1.2 1,110,517 432,055,772 401,599,403 834,765,692 0.278229
rate 1.3 1,684,421 432,507,813 402,095,215 836,287,449 0.274065
rate 1.4 2,307,142 433,010,905 402,619,302 837,937,349 0.272393
rate 1.5 2,960,568 433,533,163 403,152,623 839,646,354 0.271760
rate 1.6 3,620,279 434,047,396 403,672,576 841,340,251 0.271497
rate 1.7 4,255,817 434,526,434 404,154,916 842,937,167 0.271393
rate 1.8 4,827,987 434,942,906 404,573,078 844,343,971 0.271366
rate 1.9 5,301,655 435,275,810 404,907,048 845,484,513 0.271360
rate 2.0 5,654,318 435,515,429 405,147,304 846,317,051 0.271360
rate 2.1 5,890,136 435,671,173 405,303,503 846,864,812 0.271360
rate 2.2 6,031,703 435,762,281 405,394,910 847,188,894 0.271360
rate 2.3 6,106,298 435,808,957 405,441,729 847,356,984 0.271360
rate 2.4 6,139,254 435,829,116 405,461,953 847,430,323 0.271360
rate 2.5 6,152,092 435,836,743 405,469,710 847,458,545 0.271360

Table 3.20: Performance comparison of minimax method and fast approximate algorithm for
1024 codewords

in the increasing or decreasing order. In the encoding stage, the sum of all dimensions of the

data vector is computed and one codeword called the tentative matching codeword required for

the minimization of the left hand side of Eq. 3.71, mean distortion (MD), is found. The squared

Euclidean distortion between the data vector and this tentative matching codeword referred to

here asDmin is calculated. Then Eq. 3.71 is applied to eliminate impossible codeword matching.

Codewords Cj for which
Pk

i=� c
i
j �

Pk

i=� x
i +
p
kDmin or

Pk

i=� c
i
j �

Pk

i=� x
i � pkDmin can

be eliminated. Otherwise, the PDS is applied to calculate the distortion and update Dmin.

The efficiency of the MPS algorithm depends on the distortion of the tentative matching code-

word. If the distortion of the tentative matching codeword is small, then the MPS algorithm

is very efficient. Unfortunately, some data vectors may have small mean distortion (MD) but

the squared Euclidean distortion is significant, such as one data vector (200, 200, 0, 0) and one

codeword (0, 0, 200, 200). In order to improve performance, a new algorithm is proposed from

the extension of the bound for Minkowski metric (Pan et al., 1996b). This bound is as follows:

73

if

sX
i=�

jxi � cijjp �
n
p

q
h

n
p
��Dmin (����)

then

kX
i=�

jxi � cijjn � Dmin (����)

where s � h � k and p � n.

This is an improved absolute error inequality (IAEI) criterion (Pan et al., 1996b) by setting

n = � and p = �. Hence the IAEI criterion is expressed as follows:

if

sX
i=�

jxi � cijj �
p
hDmin� (����)

then

kX
i=�

(xi � cij)
� � Dmin� (����)

where s � h � k.

Because

sX
i=�

jxi � cij j � j
sX
i=�

xi �
sX
i=�

cijj� (����)

hence a new inequality is derived as follows:

if j
sX
i=�

xi �
sX
i=�

cijj �
p
hDmin� (����)

then

kX
i=�

(xi � cij)
� � Dmin�

where s � h � k.

This new inequality (Eq. 3.77) is the generalized form of the the basic inequality (Eq. 3.71)

of the MPS algorithm. By using this new inequality, the codeword can be separated into two

vectors. The first vector is composed of the first half of the elements, the other elements belong

to the second vector. Using these two separated vectors, the sum of the elements for these

separated codewords can be calculated first. Therefore Eq. 3.77 can be applied to eliminate

impossible codeword matching for these two separated vectors. Because the sum of the first part

is considered as well as the sum of the second part, this approach overcomes the inefficiency

74

of the unsuitable tentative matching codeword using mean distortion (MD). By combining the

MPS algorithm with Eq. 3.77 for the separated codewords, the improved algorithm is computed

as follows:

Step 1: FCode sumi =
Pk��

j=� c
j
i, SCode sumi =

Pk

j= k
�

+� c
j
i andTCode sumi = FCode sumi+

SCode sumi are calculated for each codeword, i = �� �� ����N,N is the number of code-

words. A sorting list is computed according to the increasing order of the TCode sum i.

Step 2: FData sum =
Pk��

j=� x
j, SData sum =

Pk

j= k
�

+� x
j andTData sum = FData sum+

SData sum are calculated.

Step 3: Calculate the tentative matching codeword i usingargMinijTData sum�TCode sumij.

Step 4: Calculate the squared Euclidean distortion Dmin for the tentative matching codeword.

Set l to be the nearest uncalculated codeword to the tentative matching codeword in the

sorting list.

Step 5: Check the termination of this program. Test Eq. 3.71 for the neighbour codewords in a

back-and-forth manner as in paper (Ra & Kim, 1993), if it is satisfied, delete impossible

codeword matching, set l to be the nearest uncalculated codeword to the tentative matching

codeword in the sorting list and goto step 5; Otherwise, goto next step.

Step 6: If jFData sum � FCode sumlj �
q

k

�
Dmin or jSData sum � SCode sumlj �q

k
�
Dmin, then eliminate this codeword; otherwise use the PDS to the codeword search

and update the Dmin. Set l to be the nearest uncalculated codeword to the tentative

matching codeword in the sorting list and goto step 5.

The training material for these experiments was a LENA image. It consists of 512 x 512 pels

with 8 bits/pel resolution. Codebook sizes of 64, 128, 256, 512 and 1024 are generated by the

well known LBG algorithm. The vector dimension k is 16. An AIRPLANE image was used as

the test material. Experiments were carried out to test the performance of the MPS algorithm

and the proposed new algorithm. The performance is measured in terms of the number of

calculated distortions. As shown in Table 3.21, Table 3.22, Table 3.23, 3.24 and 3.25, the

new algorithm reduces 29%, 34%, 38%, 42% and 44% calculated distortions compared with the

MPS algorithm for 64, 128, 256, 512 and 1024 codewords, respectively. In terms of the number

75

of multiplications, this new algorithm reduces 27.57 % compared with the MPS algorithm for

1024 codewords. In terms of the total number of operations, 10.81%, 13.31% and 14.94%

operations are reduced for 256, 512 and 1024 codewords, respectively. Actually, this algorithm

can be further improved by using IAEI (Pan et al., 1996b) instead of PDS. Note that (k + �)N

memory is needed for this improved algorithm compared with (k + �)N memory for the MPS

algorithm. From the experiments, the performance of the proposed algorithm is significantly

better than the MPS algorithm. This improved algorithm can be extended by separating the

codevector into several sub-vectors.

method mul. add. cmp. sum distortion no.
MPS 938,360 2,068,161 820,387 3,826,908 69,088
New 841,071 1,918,504 826,195 3,585,770 49,116

Table 3.21: Performance comparison of MPS and New algorithm for 64 codewords, MSE=168

method mul. add. cmp. sum distortion no.
MPS 1,417,101 3,006,633 1,372,334 5,796,068 134,886
New 1,203,841 2,721,519 1,373,637 5,298,997 89,061

Table 3.22: Performance comparison of MPS and New algorithm for 128 codewords, MSE=138

method mul. add. cmp. sum distortion no.
MPS 2,236,464 4,626,455 2,323,753 9,186,672 259,460
New 1,798,428 4,082,844 2,312,421 8,193,693 161,573

Table 3.23: Performance comparison of MPS and New algorithm for 256 codewords, MSE=115

3.7 Fast Search Algorithm for Quadratic Metric

In chapter 2, subsection 2.9.1, the bound for quadratic metric (Pan et al., 1996b) is derived.

Assume that

Dmin = D(X�Cm) = (X� Cm)tW��(X � Cm) =
kX
i=�

jEtmVij�� (����)

76

If

sX
i=�

jEtjVij �
p
hDmin� (����)

then D(X�Cj) � Dmin (����)

where Em = X� Cm, W�� = LLt, L = [V�V�V����Vk], and s � h � k.

For speech or image data, the classification result of the present vector is usually the same as

or close to the classified result of the previous vector. The nearest codeword of the previous

vector can be used as the tentative match called previous vector candidate (Pan, 1988; Pan et al.,

1996c; Chen & Pan, 1989). A fast search algorithm for the quadratic metric is proposed by using

the previous vector candidate as the tentative match, then the bound for quadratic metric

is applied to eliminate impossible codeword match. This fast search algorithm is depicted as

follows:

Step 1: Compute the nearest neighbour for the first frame X�. For the other frame Xp, use the

nearest neighbour of Xp�� (previous vector candidate) as a tentative match and so find the

initial value of Dmin.

Step 2: For every codeword Cj, calculate steps 3 to 7.

Step 3: For every dimension (i from 1 to k), calculate steps 4 to 6.

Step 4: Calculate the error vector component eij = (xi � cij) and jEtjVij =
Pi

r=� erjlir.

Step 5: If
Pi

m=� jEtjVmj �
p
hDmin, h � i, then Cj will not be the nearest neighbour to the

frame Xp, therefore go to step 3 for the next codeword.

Step 6: Calculate jEtjVij�. If
Pi

m=� jEtjVmj� � Dmin, then Cj will not be the nearest neighbour

to the frame Xp, therefore go to step 3 for the next codeword.

Step 7: If
Pk

m=� jEtjVmj� � Dmin, set Dmin =
Pk

m=� jEtjVmj� and record Cj as the nearest

neighbour to Xp.

The test materials for these experiments consisted of 99 words recorded from one male speaker.

The speech was sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients were

computed over 20 ms-wide frames with a 5 ms frame shift. The total number of frames is

77

9,391. Codebooks with 256, 512 and 1,024 codewords with quadratic metric are used in these

experiments.

The conventional exhaustive method, the fast codeword search algorithm without tentative

match approach (i.e. withC� as the tentative candidate) and the fast codeword search algorithm

with quadratic metric were tested in these experiments. The conventional exhaustive method is

referred to as “conventional”. The fast codeword search algorithm without tentative match

approach and the fast codeword search algorithm are referred to as “No � quadratic” and

“Pre � quadratic”, respectively. The bounds for quadratic metric are separated into four

sections (h = �� �� �� ��).

The experimental results are shown in Tables 3.26, 3.27 and 3.28. For 1,024 codewords, 91.6%

of the number of multiplications are saved, as well as considerable saving in the number of

additions. The increase in the number of comparisons is moderate.

A modified method can be applied to previous fast algorithm by preprocessingC t
mL first, thenXL

can be operated outside the loop of the codeword search. This modified method is more efficient

than previous one. Assume zmi is the element of the vector Ct
mL, � � m � N, � � i � k. The

modified algorithm is described as follows:

Step 1: Compute the nearest neighbour for the first frame X�. For the other frame Xp, use the

nearest neighbour of Xp�� (previous vector candidate) as a tentative match and so find the

initial value of Dmin.

Step 2: Calculate Xp
t
L = (y�� y�� ���� yk).

Step 3: For every codeword Cj, calculate steps 3 to 7.

Step 4: For every dimension (i from 1 to k), calculate steps 4 to 6.

Step 5: Calculate jEtjVij =
Pi

r=� jyr � zjrj.

Step 6: If
Pi

m=� jEtjVmj �
p
hDmin, h � i, then Cj will not be the nearest neighbour to the

frame Xp, therefore go to step 3 for the next codeword.

Step 7: Calculate jEtjVij�. If
Pi

m=� jEtjVmj� � Dmin, then Cj will not be the nearest neighbour

to the frame Xp, therefore go to step 3 for the next codeword.

78

Step 8: If
Pk

m=� jEtjVmj� � Dmin, set Dmin =
Pk

m=� jEtjVmj� and record Cj as the nearest

neighbour to Xp.

The same materials are used to test this modified method. Experimental results is shown in

Table 3.29. In terms of the total number of mathematic operations, the modified version can

reduce by more than 50 % computation complexity. No extra memory is needed if the same

matrix W is used throughout. Hence the original codewords need not be stored, but can be

replaced completely by the transformed codewords Ct
mL.

79

method mul. add. cmp. sum distortion no.
MPS 3,500,725 7,136,625 3,823,283 14,460,633 487,045
New 2,644,173 6,118,165 3,773,868 12,536,206 281,031

Table 3.24: Performance comparison of MPS and New algorithm for 512 codewords, MSE=92

method mul. add. cmp. sum distortion no.
MPS 6,352,245 12,818,199 7,156,645 26,327,098 962,662
New 4,600,745 10,770,471 7,022,970 22,394,186 544,073

Table 3.25: Performance comparison of MPS and New algorithm for 1024 codewords, MSE=85

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Conventional 437,545 2,395 435,141 875,081
No� quadratic 82,691 26,354 92,776 201,821
Pre� quadratic 50,685 18,630 57,003 126,318

Table 3.26: Computational complexity of codeword search for 256 codewords on quadratic
metric

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Conventional 875,091 4,799 870,283 1,750,173
No� quadratic 142,364 47,619 160,012 349,995
Pre� quadratic 86,963 33,569 97,912 218,444

Table 3.27: Computational complexity of codeword search for 512 codewords on quadratic
metric

method mul.(
���) cmp.(
���) add.(
���) sum(
���)
Conventional 1,750,182 9,607 1,740,566 3,500,355
No� quadratic 246,729 86,226 277,687 610,642
Pre� quadratic 147,768 59,737 166,366 373,871

Table 3.28: Computational complexity of codeword search for 1024 codeword on quadratic
metric

number of codewords mul.(
���) cmp.(
���) add.(
���) sum(
���)
256 10,926 18,630 27,957 57,513
512 18,837 33,569 49,433 101,839

1,024 32,555 59,737 86,882 179,174

Table 3.29: Computational complexity of modified method

80

16 codewords

64 codewords

256 codewords

1024 codewords

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2.00 4.00 6.00 8.00 10.00 12.00

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
 a

t
or

 b
ef

or
e

 th
is

 d
im

en
si

on
)

Figure 3.5: Experimental results for the elimination probability of IAEI at each feature dimension
(h is set to 1, 4, 9 and 13)

81

16 codewords

64 codewords

256 codewords

1024 codewords

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2.00 4.00 6.00 8.00 10.00 12.00

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
at

 o
r

be
fo

re
 th

is
 d

im
en

si
on

)

Figure 3.6: Experimental results for the elimination probability of IAEI at each feature dimension
(h is set to i for the ith dimension)

82

Chapter 4

Fast Clustering Algorithms

4.1 Introduction

Vector quantization (VQ) is a source coding procedure that can achieve improved data com-

pression ratios compared to linear approaches combined with a scalar quantizer such as

predictive coding or transform coding. The encoder of VQ encodes a given set of k-

dimensional data vectors X=fXjjXj 	 Rk; j = �� ���� Tg with a much smaller set of codewords

C=fCijCi 	 Rk; i = �� ���� Ng(N
 T). Only the index i is sent to the decoder. The decoder has

the same codebook as the encoder, and decoding is operated by table look-up procedure. The

performance of data compression depends on a good codebook of representative vectors.

The LBG algorithm (Linde et al., 1980) is an efficient VQ clustering algorithm. This algorithm

is based either on a known probabilistic model or on a long training sequence of data. The main

idea of this algorithm is the iterative application of a codebook modification operation where a

distortion measure D is used to compute the cost D(X j� Ci) of reproducing the data vector Xj as

the codeword Ci. Usually the Euclidean distortion measure is used to compute the cost. The

iteration is terminated if the average distortion D(X�C) converges. The iterative procedure is

time consuming and it is difficult to apply the VQ clustering procedure for real time operation.

The computational complexity of the LBG algorithm can be significantly reduced if an efficient

codeword search algorithm is applied to the partitioning of the data vectors. Many fast algorithms

have been proposed to increase the speed of codeword search. Fischer and Patrick (Fischer &

Patrick, 1970) presented a preprocessing algorithm to reorder the design sample such that a large

83

number of distance computations could be eliminated. Fukunaga and Narendra (Fukunaga &

Narendra, 1975) proposed a branch and bound (BAB) algorithm for computing some nearest

neighbours. BAB algorithm is a tree search algorithm using a hierarchical decomposition of

the sample set of known patterns. They used the criterion of triangular inequality elimination

to develop two rules to eliminate the distance computation in the tree classifier. Kamgar-Parsi

and Kanal (Kamgar-Parsi & Kanal, 1985) added another two rules to the BAB algorithm to

improve the computation time. Niemann and Goppert (Niemann & Goppert, 1988) combined

these four rules into one and used a hierarchical partition of pattern sample algorithm to get

more efficient computation time. Jiang and Zhang (Jiang & Zhang, 1993) developed a more

efficient BAB tree search algorithm for finding the nearest neighbour to a new data vector in the

codebook. All these efficient search methods described above are however not suitable to apply

to VQ clustering algorithms due to the overhead of preprocessing required.

Bei and Gray (Bei & Gray, 1985) proposed the partial distortion search (PDS) algorithm to re-

duce computational complexity. PDS is a simple and efficient codeword search algorithm which

has no extra storage or preprocessing requirements. The minimax method was proposed by

Cheng et al. to derive a tentative match and improve the search efficiency (Cheng et al., 1984).

Vidal (Vidal, 1986) presented the approximating and eliminating search algorithm (AESA) in

which the computation time is approximately constant for codeword search in a large codebook

size. AESA is a very efficient algorithm to reduce multiplication operations for large codebook

size but it needs a large number of comparison operations. Soleymoni and Morgera (Soley-

mani & Morgera, 1987b) proposed the absolute error inequality (AEI) elimination criterion to

improve the speed of VQ search. Chen and Pan (Chen & Pan, 1989) applied the triangular

inequality elimination (TIE) on VQ-based recognition of isolated words taking advantage of the

high correlation characteristics between data vectors of adjacent speech frames. In this chapter,

several fast clustering approaches based on the LBG algorithm (Linde et al., 1980) are presented

and compared.

84

4.2 Experimental Materials

The cepstrum of a signal is defined as the Fourier transform of the log of the signal spectrum.

Cepstrum coefficients are used as the test features in the clustering experiments because they are

commonly used in speech coding, speech synthesis, speech recognition and speaker recognition.

The test materials for these experiments consist of two hundred words recorded from one male

speaker. The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients

with pre-emphasis value 0.98 are computed over 20 ms-wide frames with a 5 ms frame shift. A

total of 20,030 analyzed frames are used in the VQ clustering experiments. Normally, this data

set size is used to train up to 1024 codewords. Here, it is used in the VQ clustering experiments

for 8 codewords to 1024 codewords.

4.3 LBG Algorithm

All of the fast VQ clustering algorithms (Pan et al., 1994a; Pan et al., 1996c) described in

this chapter are based on the LBG algorithm (Linde et al., 1980). This algorithm starts by

assigning all the training data vectors to a single cluster, and proceeds by binary splitting until

the desired number of clusters is achieved. After each splitting of the clusters there is an iterative

procedure in which the cluster centroids are re-estimated and the data vectors are re-classified

until the average distortion between the centroids and their classified vectors converges. The

classification at each stage uses the full-search algorithm to find the nearest centroid to each

vector. The detail algorithm based on unknown distribution is as follows:

Step 1: Set m = 1. Calculate centroid C� = �
T

PT

j=� Xj� where T is the total number of data

vectors.

Step 2: Divide each centroidCi into two close vectorsC�i�� = Ci �(�+�) andC�i = Ci�(���),

� � i � m. Here � is a small fixed perturbation scalar. Let m = �m. Set n = �, here n is

the iterative times.

Step 3: Find the nearest neighbour to each data vector. Put Xj in the partitioned set Pi if Ci is

the nearest neighbour to Xj.

85

Step 4: After obtaining the partitioned sets P = (Pi; � � i � m), set n = n + �. Calculate the

overall average distortion Dn = �

T

Pm

i=�

PTi
j=�D(X(i)

j � Ci), where Pi = fX(i)
� � X

(i)
� � ���� X

(i)
Ti
g.

Step 5: Find centroids of all disjoint partitioned sets Pi by Ci = �

Ti

PTi

j=� X
(i)
j .

Step 6: If (Dn�� � Dn)�Dn �
� go to step 3; otherwise go to step 7. Here
 is a small

distortion threshold.

Step 7: If m = N, then take the codebook Ci as the final codebook; otherwise, go to step 2.

Here N is the codebook size.

4.4 Previous Vector Candidate and Previous Partitioned Centre

In the VQ clustering procedure, speech data has the property that the classification result for the

present vector is usually the same as or close to the classified result of the previous vector (Chen

& Pan, 1989). Moreover, most of the vectors which are re-estimated in a full-search actually

remain in the same partitioned set as for the previous re-estimation. With binary codeword

splitting, the most probable partition to which data vectors belong can be chosen from the

separated centres of the partitioned set. The previous vector candidate and previous partitioned

centre can be used as tentative matches in the VQ clustering algorithm. Fig. 4.1 illustrates the

relationship between the number of codewords and the probability that data vectors remain in

the same partitioned set after re-estimation in full-search. For the fixed data vectors, the more

codewords being generated, the larger is the probability that the data vectors belong to the same

(previous) partitioned set. The probability is up to 0.949 for 1024 codewords. These results are

averages across the re-estimation and re-classification iterations when � = ���� and
 = �����.

4.5 Codebook Reorder Method

The codebook reorder method (Pan, 1988) is to reorder the codewords so as to increase the

search efficiency. For speech encoding, it chooses the nearest codeword of the previous frame

as a tentative match to encode the present frame. From training data, it is possible to calculate

the probability of these codewords to be encoded and arrange these codewords in the order

86

of decreasing probability. The codeword search is operated from the most probable codeword

to the least probable. It is simple and efficient to create a state table where these elements

are indices of codewords and arranged in the increasing order of distortion between the most

probable codeword and the other codewords. In the VQ clustering procedure, the previous

vector candidate or previous partitioned centre can be chosen as the most probable codeword

so as to create the state table. The computational complexity is O(N�log�N) using Heapsort

(Press et al., 1986) to establish the state table.

4.6 Fast Clustering Algorithms

4.6.1 APV-type clustering algorithm

An efficient clustering algorithm must include two key elements, i.e., a good tentative match

and a powerful codeword elimination criterion. The previous vector candidate as the tentative

match with AEI and PDS to improve the conventional clustering algorithm is proposed. This

algorithm is called APV-type algorithm. It is described as follows.

step 1: Set m = 1. Calculate centroid C� = �
T

PT

j=� Xj� where T is the total number of data

vectors.

step 2: Divide each centroidCi into two close vectorsC�i�� = Ci �(�+�) andC�i = Ci �(���),

� � i � m. Here � is a small fixed perturbation scalar. Let m = �m. Set n = �, here n is

the iterative times.

step 3: Compute the nearest neighbour for the first data vector X�. For data vector Xj, use the

nearest neighbour of Xj�� (previous vector candidate) as a tentative match and apply AEI

with a PDS to find the nearest neighbour to each data vector. Put Xj in the partitioned set

Pi if Ci is the nearest neighbour to Xj.

step 4: After obtaining the partitioned sets P = (Pi; � � i � m), set n = n + �. Calculate the

overall average distortion Dn = �
T

Pm

i=�

PTi
j=�D(X(i)

j � Ci), where Pi = fX(i)
� � X

(i)
� � ���� X

(i)
Ti
g.

step 5: Find centroids of all disjoint partitioned sets P i by Ci = �

Ti

PTi
j=� X

(i)
j .

87

step 6: If (Dn���Dn)�Dn �
� go to step 3; otherwise go to step 7. Here
 is a small distortion

threshold.

step 7: If m = N, then take the codebook Ci as the final codebook; otherwise, go to step 2.

Here N is the codebook size.

4.6.2 APC-type Clustering Algorithm

The previous vector candidate is a very efficient tentative match for word recognition (Chen

& Pan, 1989). It is not powerful compared with the previous partitioned centre in clustering

algorithm because some adjacent data vectors are uncorrelated. It is possible to modify this

clustering algorithm using the previous partitioned centre as a tentative match with AEI and

PDS elimination criteria. This algorithm is referred to as APC-type algorithm and it is depicted

as follows.

step 1: Set m = 1. Calculate centroid C� = �
T

PT

j=� Xj� where T is the total number of data

vectors.

step 2: Divide each centroidCi into two close vectorsC�i�� = Ci �(�+�) andC�i = Ci �(���),

� � i � m. Here � is a small fixed perturbation scalar. Let m = �m. Set n = �, here n is

the iterative times.

step 3: For each data vector Xj, set Dmin = MIN(D(Xj� C�i��)� D(Xj� C�i)), C�i�� and C�i are

split from Ci associated to the partitioned set Pi to which Xj previously belonged. Choose

C�i�� or C�i as the previous partitioned centre which is the nearest neighbour to X j.

step 4: Use the previous partitioned centre as a tentative match and apply AEI with PDS to

find the nearest neighbour to each data vector. Put Xj in the partitioned set Pi if Ci is the

nearest neighbour to Xj.

step 5: After obtaining the partitioned sets P = (Pi; � � i � m), set n = n + �. Calculate the

overall average distortion Dn = �

T

Pm

i=�

PTi
j=�D(X(i)

j � Ci), where Pi = fX(i)
� � X

(i)
� � ���� X

(i)
Ti
g.

step 6: Find centroids of all disjoint partitioned sets P i by Ci = �

Ti

PTi

j=� X
(i)
j .

88

step 7: If (Dn�� � Dn)�Dn �
� take Ci as the previous partitioned centre for each Xj 	 Pi

and go to step 4; otherwise go to step 8. Here
 is a small distortion threshold.

step 8: If m = N, then take the codebook Ci as the final codebook; otherwise, go to step 2.

Here N is the codebook size.

Fig. 4.2 shows the statistics for the elimination probability of APC-type using AEI criterion at

each feature dimension. The previous partitioned centre is used as the initial codeword in this

experiment. For 1024 codewords, 61.6% of impossible codeword matches will be eliminated

by using AEI at the first dimension and only 0.5% codewords cannot be eliminated using AEI

criterion.

4.6.3 APCH-type Clustering Algorithm

The hypercube approach provides the tighter bound thanAEI for s = �. The APC-type algorithm

can be further improved by adding the hypercube approach to step 4, as an APCH-type algorithm.

Use the previous partitioned centre as a tentative match. Check Eq. 3.5 to eliminate impossible

codeword match. Apply AEI to eliminate the codeword which cannot be eliminated using

hypercube approach. A PDS scheme is used for the codeword which cannot be eliminated using

hypercube approach and AEI criterion. The detail of this algorithm is stated as follows:

step 1: Set m = 1. Calculate centroid C� = �

T

PT

j=� Xj� where T is the total number of data

vectors.

step 2: Divide each centroidCi into two close vectorsC�i�� = Ci �(�+�) andC�i = Ci �(���),

� � i � m. Here � is a small fixed perturbation scalar. Let m = �m. Set n = �, here n is

the iterative times.

step 3: For each data vector Xj, set Dmin = MIN(D(Xj� C�i��)� D(Xj� C�i)), C�i�� and C�i are

split from Ci associated to the partitioned set Pi to which Xj previously belonged. Choose

C�i�� or C�i as the previous partitioned centre which is the nearest neighbour to X j.

step 4: Use the previous partitioned centre as a tentative match and apply AEI, hypercube

approach and PDS to find the nearest neighbour to each data vector. Put Xj in the

89

partitioned set Pi if Ci is the nearest neighbour to Xj.

step 5: After obtaining the partitioned sets P = (Pi; � � i � m), set n = n + �. Calculate the

overall average distortion Dn = �

T

Pm

i=�

PTi

j=�D(X(i)
j � Ci), where Pi = fX(i)

� � X
(i)
� � ���� X

(i)
Ti
g.

step 6: Find centroids of all disjoint partitioned sets P i by Ci = �
Ti

PTi
j=� X

(i)
j .

step 7: If (Dn�� � Dn)�Dn �
� take Ci as the previous partitioned centre for each Xj 	 Pi

and go to step 4; otherwise go to step 8. Here
 is a small distortion threshold.

step 8: If m = N, then take the codebook Ci as the final codebook; otherwise, go to step 2.

Here N is the codebook size.

Fig. 4.3 shows the statistics for the elimination probability of APCH-type using the hypercube

approach at the first feature dimension andAEI criterion at the other feature dimension. The pre-

vious partitioned centre is used as the initial codeword in this experiment. For 1024 codewords,

88.9% of impossible codeword matches will be eliminated by using the hypercube approach at

the first dimension and only 0.45% codewords cannot be eliminated using hypercube approach

and AEI criterion. For 8 codewords and 64 codewords, only 8.3% and 2.9% codewords cannot

be eliminated using hypercube approach and AEI criterion.

4.6.4 IPC-type Clustering Algorithm

The hypercube approach and AEI criterion are special cases of the improved AEI (IAEI)

criterion. Here, the improvedAEI criterion is adopted to increase the efficiency for the clustering

algorithm in step 4. This algorithm is referred to as IPC-type algorithm. By applying Eq. 3.45,

this criterion can be separated into several sections. For 13-dimensional cepstrum coefficients,

it is possible to separate the improved AEI criterion into four sections. These four sections are

to set h=1 to check the first dimension-difference, h=4 for the sum from the first dimension-

difference to the fourth, h=9 for the sum from the first dimension-difference to the ninth and

h=13 for the sum of all dimension-differences. A PDS scheme is used for the codeword which

cannot be eliminated using the improvedAEI criterion. The detail algorithm is stated as follows:

90

step 1: Set m = 1. Calculate centroid C� = �
T

PT

j=� Xj� where T is the total number of data

vectors.

step 2: Divide each centroidCi into two close vectorsC�i�� = Ci �(�+�) andC�i = Ci �(���),

� � i � m. Here � is a small fixed perturbation scalar. Let m = �m. Set n = �, here n is

the iterative times.

step 3: For each data vector Xj, set Dmin = MIN(D(Xj� C�i��)� D(Xj� C�i)), C�i�� and C�i are

split from Ci associated to the partitioned set Pi to which Xj previously belonged. Choose

C�i�� or C�i as the previous partitioned centre which is the nearest neighbour to X j.

step 4: Use the previous partitioned centre as a tentative match and apply IAEI with PDS to

find the nearest neighbour to each data vector. Put Xj in the partitioned set Pi if Ci is the

nearest neighbour to Xj.

step 5: After obtaining the partitioned sets P = (Pi; � � i � m), set n = n + �. Calculate the

overall average distortion Dn = �

T

Pm

i=�

PTi
j=�D(X(i)

j � Ci), where Pi = fX(i)
� � X

(i)
� � ���� X

(i)
Ti
g.

step 6: Find centroids of all disjoint partitioned sets P i by Ci = �

Ti

PTi

j=� X
(i)
j .

step 7: If (Dn�� � Dn)�Dn �
� take Ci as the previous partitioned centre for each Xj 	 Pi

and go to step 4; otherwise go to step 8. Here
 is a small distortion threshold.

step 8: If m = N, then take the codebook Ci as the final codebook; otherwise, go to step 2.

Here N is the codebook size.

Fig. 4.4 shows the statistics for the elimination probability of IPC-type using IAEI criterion at

each feature dimension. The previous partitioned centre is used as the initial codeword in this

experiment. For 1024 codewords, 88.9% of impossible codeword matches will be eliminated

by using IAEI at the first dimension and only 0.38% codewords cannot be eliminated. For 8

codewords and 64 codewords, only 5.4% and 2.2% codewords cannot be eliminated using IAEI

criterion.

91

4.6.5 TPC-type, ATPC-type and TPCR-type Clustering Algorithms

The triangular inequality elimination (TIE) criteria can also be applied to step 4 of the clustering

algorithm. TPC-type is the clustering algorithm combining previous partitioned centre, TIE and

PDS. An ATPC-type algorithm is the addition of AEI to the TPC-type algorithm, i.e., if the

codeword cannot be eliminated using TIE, then applyAEI and PDS. A TPCR-type algorithm is

the addition of a codebook reorder method to the TPC-type algorithm, i.e., reorder the codewords

in increasing order of distortion between previous partitioned centre and these codewords before

applying TIE. Fig. 4.5 illustrates the elimination probability using TIE combined with previous

partitioned centre in VQ clustering procedure. For 1024 codewords, the elimination probability

is 0.949.

4.7 Experiments and Results

The test materials used in the VQ clustering experiments are described in the Section 4.2. To

verify these fast algorithms, the mathematical operations (multiplications, comparisons, and

additions) are used to calculate the computational efficiency. The experiments are carried out

by setting the small fixed perturbation scalar to 0.01 and the small distortion threshold to 0.005.

Twelve approaches are compared in the VQ clustering procedure. The conventional exhaustive

method is referred to as CVT-type. P-type and T-type are approaches using PDS and TIE in

codebook design. TP-type is the approach using TIE to eliminate unlikely codeword matches,

then applying PDS to the codeword search. TPC-type is the algorithm using the previous

partitioned centre as the most probable matching with TIE and PDS to reduce the clustering

time. TPCR-type is the TPC-type with codebook reorder method. It is called an APC-type if

the previous partitioned centre is used as the tentative match with AEI and PDS to accelerate

the clustering speed. Using the previous vector candidate instead of the previous partitioned

centre in an APC-type is called the APV-type. The ATPC-type is an algorithm combining TIE,

AEI, PDS and the previous partitioned centre. The APCH-type is the addition of the hypercube

approach to the APC-type. IPC-type is an algorithm combining the previous partitioned centre,

improved AEI and PDS. The combination of previous partitioned centre, hypercube approach

92

and partial distortion search is referred to as the PCH-type.

The experimental results for 8 codewords to 1024 codewords are shown in Table 4.1, 4.2, 4.3,

4.4, 4.5, 4.6, 4.7 and 4.8. For a general processor architecture, the multiplication operation is

more expensive than the comparison operation and the addition operation. It is better to use an

IPC-type algorithm for large codebook size and a TPC-type algorithm or TPCR-type algorithm

for small codebook size. Table 4.1 to Table 4.8 also illustrate the number of total mathematical

operations. In terms of the total number of operations, TPC-type outperforms all of the above

algorithms. It needs extra computation time to generate the distortion table for TIE approach

and that is why the total number of multiplications in ATPC-type, TPC-type and TPCR-type

are larger than IPC-type, APC-type, APV-type, PCH-type and APCH-type for 1024 codewords.

The codebook reorder method is not very efficient in the VQ clustering algorithm owing to the

overhead of the sorting procedure. In small codebook size (such as 8 codewords), TPCR-type

is excellent. It is not however superior compared with IPC-type, APCH-type, APC-type, APV-

type, ATPC-type and TPC-type for large codebook size. For other codebook sizes between 8

codewords and 1024 codewords, these fast VQ clustering algorithms are also very efficient in

computation.

The comparison of elimination probability of APC-type, APCH-type and IPC-type algorithms

for 16 codewords is shown in Fig. 4.6. For 16 codewords, the elimination probability of

APCH-type algorithm and APC-type algorithm are 0.85 and 0.37 at the first dimension. This

means that the hypercube approach is efficient. The elimination probability of the APCH-type

algorithm is the same as the IPC-type algorithm at the first feature dimension. At other feature

dimensions, the elimination probability of the IPC-type algorithm is higher than the APCH-type

algorithm. The IAEI criterion is superior to the AEI criterion with hypercube approach in the

VQ clustering algorithm. Fig. 4.7 and 4.8 illustrate the saving in the number of multiplications

at each iteration of IPC-type, PCH-type, TPC-type and ATPC-type algorithms for 128 and 1024

codewords. Fig. 4.9 and 4.10 illustrate the saving in the total number of mathematical operations

at each iteration of IPC-type, PCH-type, TPC-type and ATPC-type algorithms for 128 and 1024

93

codewords. The comparative efficiency of these algorithms are only influenced a little by the

number of iterations.

To sum up, the IPC-type algorithm, which is a combination of the previous partitioned centre,

the improved absolute error inequality criterion and the partial distortion search, is judged to

be the best VQ clustering algorithm approach for general processors. In contrast, the TPC-type

algorithm, which is a combination of the previous partitioned centre, the triangular inequality

elimination and the partial distortion search is judged to be the most suitable approach for DSP

processors.

94

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 5.72 2.92 18.0 26.6 61.4 % 73.5 %

APCH 5.82 3.57 18.5 27.9 59.6 % 73.1 %
APC 5.88 6.87 25.0 37.8 45.2 % 72.8 %
APV 5.90 8.53 26.1 40.5 41.3 % 72.7 %
ATPC 5.87 5.87 21.3 33.0 52.2 % 72.8 %
PCH 5.72 1.94 15.8 23.5 65.9 % 73.5 %
TPC 5.63 2.30 15.0 22.9 66.8 % 73.9 %

TPCR 5.63 2.30 15.0 22.9 66.8 % 73.9 %
TP 13.6 11.1 30.4 55.1 20.1 % 37.0 %
P 14.0 13.8 30.9 58.7 14.9 % 54.3 %
T 16.2 2.31 35.7 54.2 21.4 % 33.3 %

CVT 21.6 1.36 46.0 69.0 0 % 0 %

Table 4.1: Computational complexity of VQ clustering for 8 codewords

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 8.59 6.98 30.0 45.6 71.1 % 83.1 %

APCH 8.77 8.45 31.3 48.5 69.3 % 82.7 %
APC 8.87 15.2 45.0 69.1 56.3 % 82.5 %
APV 9.41 18.4 47.8 75.6 52.2 % 81.5 %
ATPC 8.86 12.8 35.9 57.6 63.5 % 82.6 %
PCH 9.13 4.90 25.4 39.4 75.1 % 82.0 %
TPC 8.91 5.59 23.0 37.5 76.3 % 82.5 %

TPCR 8.91 5.60 23.0 37.5 76.3 % 82.5 %
TP 28.1 25.8 60.0 114 27.8 % 44.7 %
P 29.3 29.0 61.3 120 24.1 % 42.3 %
T 35.2 5.73 74.3 115 27.2 % 30.7 %

CVT 50.8 3.47 104 158 0 % 0 %

Table 4.2: Computational complexity of VQ clustering for 16 codewords

95

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 12.5 17.2 52.1 81.8 78.8 % 90.1 %

APCH 12.8 20.6 55.8 89.2 76.9 % 89.8 %
APC 13.0 34.6 84.6 132 65.8 % 89.7 %
APV 14.7 40.9 91.8 147 61.9 % 88.3 %
ATPC 13.0 28.4 61.6 103 73.3 % 89.7 %
PCH 15.0 12.7 42.3 70.0 81.9 % 88.1 %
TPC 14.5 14.1 35.6 64.2 83.4 % 88.5 %

TPCR 14.4 14.1 35.6 64.1 83.4 % 88.6 %
TP 60.2 61.1 123 244 36.8 % 52.2 %
P 63.8 63.6 127 254 34.2 % 49.4 %
T 81.0 14.7 165 260.7 32.5 % 35.7 %

CVT 126 9.1 251 386 0 % 0 %

Table 4.3: Computational complexity of VQ clustering for 32 codewords

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 15.9 32.0 78.3 126 82.9 % 93.4 %

APCH 16.3 37.9 85.4 140 81.0 % 93.3 %
APC 16.5 61.0 133 211 71.4 % 93.2 %
APV 19.7 71.8 147 239 67.6 % 91.9 %
ATPC 16.7 48.6 88.3 154 79.1 % 93.1 %
PCH 21.6 24.7 62.2 109 85.2 % 91.1 %
TPC 20.3 26.4 48.0 94.7 87.2 % 91.6 %

TPCR 20.2 26.8 48.0 95.0 87.1 % 91.7 %
TP 99.4 107 199 405 45.1 % 58.9 %
P 107 107 207 421 43.0 % 55.8 %
T 147 28.4 294 469 36.4 % 39.3 %

CVT 242 17.9 478 738 0 % 0 %

Table 4.4: Computational complexity of VQ clustering for 64 codewords

96

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 20.0 63.3 127 210 86.4 % 96.1 %

APCH 20.5 74.4 141 236 84.7 % 96.0 %
APC 20.7 115 225 361 76.6 % 95.9 %
APV 26.6 135 255 417 72.9 % 94.8 %
ATPC 21.8 87.7 131 241 84.4 % 95.7 %
PCH 33.2 51.3 99.2 184 88.1 % 93.5 %
TPC 29.7 53.0 67.0 149.7 90.3 % 94.2 %

TPCR 29.7 54.7 67.0 151.4 90.2 % 94.2 %
TP 163 188 318 669 56.6 % 68.0 %
P 181 181 337 699 54.6 % 64.4 %
T 287 59.3 565 911 40.8 % 43.6 %

CVT 509 38.2 993 1540 0 % 0 %

Table 4.5: Computational complexity of VQ clustering for 128 codewords

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 24.4 122 209 355 88.7 % 97.7 %

APCH 25.0 141 234 400 87.3 % 97.6 %
APC 25.2 210 381 616 80.4 % 97.6 %
APV 35.2 249 441 752 76.1 % 96.6 %
ATPC 29.7 154 191 375 88.1 % 97.1 %
PCH 51.4 103 163 317 89.9 % 95.1 %
TPC 44.6 103 95.8 243 92.3 % 95.7 %

TPCR 44.5 111 95.6 251 92.0 % 95.7 %
TP 256 316 486 1058 66.3 % 75.4 %
P 295 295 526 1116 64.5 % 71.7 %
T 546 120 1065 1731 44.9 % 47.6 %

CVT 1042 79.1 2021 3142 0 % 0 %

Table 4.6: Computational complexity of VQ clustering for 256 codewords

97

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 28.5 218 335 582 90.2 % 98.6 %

APCH 29.2 250 376 655 89.0 % 98.5 %
APC 29.4 362 616 1007 83.1 % 98.5 %
APV 44.8 431 731 1207 79.7 % 97.7 %
ATPC 45.8 256 275 577 90.3 % 97.7 %
PCH 77.6 190 265 533 91.0 % 96.1 %
TPC 69.6 186 143 399 93.3 % 96.5 %

TPCR 69.5 220 143 433 92.7 % 96.5 %
TP 385 503 713 1601 73.1 % 80.5 %
P 458 458 783 1699 71.4 % 76.8 %
T 967 223 1877 3067 48.4 % 51.1 %

CVT 1976 151 3817 5944 0 % 0 %

Table 4.7: Computational complexity of VQ clustering for 512 codewords

method mul(
���) cmp(
���) add(
���) sum(
���) saving sum saving mul
IPC 33.0 427 594 1054 91.5 % 99.2 %

APCH 33.8 481 663 1178 90.5 % 99.2 %
APC 34.1 680 1082 1796 85.5 % 99.2 %
APV 58.6 812 1323 2194 82.2 % 98.6 %
ATPC 105 463 465 1033 91.6 % 97.4 %
PCH 127 384 479 990 92.0 % 96.9 %
TPC 143 366 283 792 93.6 % 96.5 %

TPCR 143 539 282 964 92.2 % 96.5 %
TP 645 871 1165 2681 78.3 % 84.3 %
P 777 777 1259 2813 77.2 % 81.1 %
T 1887 453 3649 5989 51.5 % 54.1 %

CVT 4109 315 7922 12346 0 % 0 %

Table 4.8: Computational complexity of VQ clustering for 1024 codewords

98

0.00 0.20 0.40 0.60 0.80 1.00

0.95

0.90

0.85

0.80

0.75

0.70

3(x 10)Number of Codewords

Pr
ob

ab
ili

ty

Figure 4.1: Relationship between the number of codewords and the probability of the data
vectors belonging to the previous partitioned set

99

8 codewords

64 codewords
1024 codewords

0.40

0.50

0.60

0.70

0.80

0.90

1.00

2.00 4.00 6.00 8.00 10.00 12.00

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
at

 o
r

be
fo

re
 th

is
 d

im
en

si
on

)

Figure 4.2: The elimination probability of APC-type using AEI at each feature dimension

100

64 codewords

1024 codewords

8 codewords

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

2.00 4.00 6.00 8.00 10.00 12.00

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
at

 o
r

be
fo

re
 th

is
 d

im
en

si
on

)

Figure 4.3: The elimination probability of APCH-type at each feature dimension

101

8 codewords

64 codewords
1024 codewords

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

2.00 4.00 6.00 8.00 10.00 12.00

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
at

 o
r

be
fo

re
 th

is
 d

im
en

si
on

)

Figure 4.4: The elimination probability of IPC-type using IAEI at each feature dimension

102

0.00 0.20 0.40 0.60 0.80 1.00

0.95

0.90

0.85

0.80

0.75

0.70

3
(x 10)Number of Codewords

Pr
ob

ab
ili

ty

Figure 4.5: Relationship between the number of codewords and the elimination probability using
TIE

103

APC-type

APCH-type

IPC-type

2 4 6 8 10 12

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Feature Dimension

Pr
ob

.(
el

im
in

at
io

n
at

 o
r

be
fo

re
 th

is
 d

im
en

si
on

)

Figure 4.6: Comparison of elimination probability for 16 codewords

104

IPC-type

PCH-type

TPC-type

ATPC-type

91.50

92.00

92.50

93.00

93.50

94.00

94.50

95.00

95.50

96.00

2.00 4.00 6.00 8.00

Number of Iterations

Sa
vi

ng
 in

 th
e

N
um

be
r

of
 M

ul
tip

lic
at

io
ns

 %

Figure 4.7: Saving in the number of multiplications at each iteration for 128 codewords

105

IPC-type

PCH-type

TPC-type

ATPC-type

96.50

97.00

97.50

98.00

98.50

99.00

2.00 4.00 6.00 8.00

Number of Iterations

Sa
vi

ng
 in

 th
e

N
um

be
r

of
 M

ul
tip

lic
at

io
ns

 %

Figure 4.8: Saving in the number of multiplications at each iteration for 1024 codewords

106

IPC-type

PCH-type

TPC-type

ATPC-type

80.00

81.00

82.00

83.00

84.00

85.00

86.00

87.00

88.00

89.00

90.00

2.00 4.00 6.00 8.00

Number of Iterations

Sa
vi

ng
 in

 th
e

T
ot

al
 N

um
be

r
of

 O
pe

ra
tio

ns
 %

Figure 4.9: Saving in the total number of mathematical operations at each iteration for 128
codewords

107

ATPC-type

IPC-type

PCH-type

TPC-type

90.50

91.00

91.50

92.00

92.50

93.00

93.50

2.00 4.00 6.00 8.00

Number of Iterations

Sa
vi

ng
 in

 th
e

T
ot

al
 N

um
be

r
of

 O
pe

ra
tio

ns
 %

Figure 4.10: Saving in the total number of mathematical operations at each iteration for 1024
codewords

108

Chapter 5

Improved Algorithms for VQ
Codebook Design

5.1 Introduction

Data compression using vector quantization (VQ) has received great attention because of its

promising compression ratio and simple implemented structure. For the simplest VQ imple-

mentation, it separates the signal into several sections and compresses each section into one

vector. Each vector of the signal to be compressed is compared to the codevectors of a code-

book. The address of the codevector most similar to the signal vector is sent to the receiver. At

the receiver, the decoder accesses a codevector from an identical codebook, thus an approxima-

tion of the original signal is reconstructed. Compression is obtained by sending the index of the

particular codevector thereby requiring fewer bits than sending the signal vector. The key toVQ

data compression is a good codebook design.

Suppose that there are T training data vectors Xj, j = �� �� ���� T and N codevectors Ci,

i = �� �� ����N, are generated from these training data vectors. The training data vectors are

partitioned intoN sets Si and Ci is the centroid of the training data vectors in the partitioned set

Si. The criterion of the VQ codebook design can be formulated as the following mathematical

form:

109

minimize f(W�X�C) =
TX
j=�

NX
i=�

wijD(Xj� Ci)� (���)

subject to the following constraints:

NX
i=�

wij = �� � � j � T (���)

wij = � or �� (���)

where X = fX�� X�� ���� XTg, Xj � jth training data vector, C = fC�� C�� ���� CNg, Ci � ith

centroid vector, W � a N
 T matrix,

wij =

�����
����

�� if Xj
Si

�� if Xj �
Si

T � the total number of training data vectors, N � the number of codevectors D(Xj� Ci) � the

distortion between the data vector Xj and the codevector Ci.

If the squared Euclidean distortion measure is applied, then the criterion of the VQ codebook

design can be expressed as

minimize f(W�X�C) =
TX
j=�

NX
i=�

wij

kX
p=�

(xpj � cpi)�� (���)

where k is the number of dimensions,Ci = fc�i � c�i � ���� ckig and Xj = fx�j � x�j � ���� xkjg. The matrix

W can be considered as the partitioned results of the training data vectors and from the matrix

W, the codevector can be obtained as

Ci =
�

jSij
TX
j=�

wijXj� (���)

where jSij denotes the number of training data vectors in the partitioned set S i or the number of

non-zero wij, j = �� �� ���� T. The number of possible codebooks generated from these training

110

data vectors (Anderberg, 1973) is

�

N!

NX
i=�

(��)N�i

�
BBB�

N

i

CCCA iT� (���)

If all the possible codebooks are tested, then a globally optimal codebook can be obtained.

Unfortunately, such computation is normally prohibitive, making any kind of exhaustive search

unrealistic even for the most powerful computers with relatively small values of codebook

size N and the number of training data vectors T. In order to overcome this difficulty, many

algorithms were applied to codebook design to produce sub-optimal codebook designs, such

as the K-means algorithm, ISODATA clustering algorithm, GLA algorithm, pairwise nearest

neighbour (PNN) algorithm, fuzzy C-means clustering algorithm, simulated annealing method,

stochastic relaxation approach, continuation method and deviation reduction algorithm which

will be described in the following subsections. New codebook design procedures using genetic

algorithms and genetic algorithms coupled with the stochastic relaxation approach will be

presented and experimental comparison of these algorithms with GLA will be presented in

section 5.3.

5.1.1 K-means and ISODATA Clustering Algorithms

The K-means algorithm (MacQueen, 1967) is a well known iterative procedure for the clustering

problem. It is also known as the C-means algorithm or basic ISODATA clustering algorithm.

This algorithm can also be applied to VQ codebook design, and the K-means algorithm can be

depicted as follows:

Step 1: Randomly select N training data vectors as the initial codevectors Ci, i = �� �� ����N

from T training data vectors.

Step 2: For each training data vector Xj, j = �� �� ���� T, assign Xj to the partitioned set Si if

i = argminlD(Xj� Cl)� (���)

111

Step 3: Compute the centroid of the partitioned set (codevector) using

Ci =
�

jSij
X
Xj�Si

Xj (���)

where jSij denotes the number of training data vectors in the partitioned set S i. If there is

no change in the clustering centroids, then terminate this program; otherwise, go to step 2.

The ISODATA clustering algorithm (Ball & Hall, 1967) is a highly interactive version of the

K-means algorithm. This algorithm is characterized by the addition of several heuristics to

eliminate, aggregate and/or split clusters based on several predefined parameters (Ball & Hall,

1967).

5.1.2 GLA Algorithm

An iterative nonvariational technique for the design of scalar quantizer has been reported (Lloyd,

1982). Linde, Buzo and Gray (LBG) extended Lloyd’s (Linde et al., 1980) basic approach to

the general case of vector quantizer. It is called the LBG algorithm and it is also known as

the Generalised Lloyd algorithm (GLA). The GLA algorithm is a well known codebook design

algorithm and has been described in Section 4.3 where the basic idea of finding the centroids of

partitioned sets and the minimum distortion partitions is the same as the K-means algorithm. In

the K-means algorithm, the initial centroids are selected randomly from the training vectors and

the training vectors are added to the training procedure one at a time. The training procedure

terminates when the last vector is incorporated. In contrast in the GLA algorithm, the initial

centroids are generated from all of the training data by applying the splitting procedure and

all the training vectors are incorporated to the training procedure at each iteration. Normally,

the K-means algorithm is used to group data and the groups can change with time; the GLA

algorithm is applied to generate the centroids and the centroids cannot change with time.

112

5.1.3 Pairwise Nearest Neighbour Algorithm

An agglomerative clustering approach is a process in which each training data is placed in

its own cluster and these atomic clusters are gradually merged into larger and larger clusters

until the desired objective is attained. A divisive clustering approach reverses the process

of agglomerative clustering approach by starting with all training data in one cluster and

subdividing into several smaller clusters. The GLA algorithm starts from one cluster and then

separates this cluster to two clusters, four clusters, and so on until N clusters are generated,

where N is the desired number of clusters or codebook size. Therefore the GLA algorithm is a

divisive clustering approach. The pairwise nearest neighbour (PNN) algorithm (Equitz, 1989;

Equitz, 1987) is an agglomerative clustering approach. PNN is actually identical to Ward’s

hierarchical clustering method (Bottemiller, 1992; Ward, 1963) published in 1963.

The PNN algorithm begins with a separate cluster for each vector in the training set and merges

together two clusters at a time until the desired number of codevectors is achieved. At the start of

this algorithm, there are T training data vectors and each data vector corresponds to a codevector,

i.e., the codebook size is T. Then, these T clusters are converted to T � � clusters by merging

together into a single cluster the two closest clusters. This merging process is repeated until the

number of clusters is equal to the desired number of codevectors or the average distortion is

greater than the predefined maximum average distortion.

The pairwise nearest neighbour algorithm can be depicted as follows:

Step 1: Set the current number of codevectors v = T and the codevector Ci which belongs to

the partitioned set Si, is the training data vector, i = �� �� ���� T. T is the total number of

training data vectors.

Step 2: Calculate the pair distortion d(Ci � Cj) between the codevectors Ci and Cj, � � i � v,

i � j � v.

113

Step 3: Merge two partitioned sets Si and Sj to Si and calculate new codevector Ci = niCi+njCj
ni+nj

if d(Ci � Cj) = fmind(Cm� Cn)� � � n � v� n � m � vg. Set Cj = Cv, Sj = Sv and

v = v� �. Here, ni and nj are the number of training data vectors in the partitioned sets

Si and Sj.

Step 4: Calculate the average distortion for the partitioned sets.

Step 5: Terminate the program if v = N or the average distortion is greater than the predefined

maximum average distortion, where N is the desired codebook size.

The pairwise nearest neighbour algorithm is an agglomerative clustering approach in which

pairs of clusters are progressively merged together. The key to efficient execution of this

algorithm is to find the closest pairs of centroids quickly among all centroids. The obvious way

is to explicitly find each centroid’s nearest neighbour, but this requires at least a log�T search

(Equitz, 1989) and leads to a complexity of O(TlogT) for each merge. In order to reduce the

computation complexity, a K-d tree structure (Bentley, 1975; Friedman et al., 1977) can be

applied to reduce the complexity of the entirePNN algorithm toO(Tlog�T) and it is independent

of the number of codevectors.

5.1.4 Simulated Annealing Method

Simulated annealing (SA) (Kirkpatrick et al., 1983; Bohachevsky et al., 1986) is a random

search method which has been presented for optimization of NP-hard problems. Vechi and

Kirkpatrick applied a simulated annealing method to the optimization of a wiring problem

(Vecchi & Kirkpatrick, 1983). Gamal et al. also used the method of simulated annealing to

construct good source codes, error-correcting codes and spherical codes (Gamal et al., 1987).

Cetin and Weerackody first proposed the method of simulated annealing in vector quantizer

design (Cetin & Weerackody, 1988). There are also many algorithms involving simulated

annealing for codebook design (Vaisey & Gersho, 1988; Flanagan et al., 1989; Lu & Morrell,

1991). The basic algorithm of simulated annealing for codebook design can be stated as follows:

114

Step 1: The training dataXj, j = �� �� ���� T, is partitioned into the partitioned setS i, i = �� �� ����N

randomly. Set n = � and calculate the codevector

Ci =
�

jSij
X
Xj�Si

Xj (���)

where jSij denotes the number of training data vectors in the partitioned set S i.

Step 2: The codebook is perturbed by randomly selecting a data vector and moving this data

vector from its current partitioned set to the different randomly selected partitioned set.

Calculate the new centroids.

Step 3: The change in distortion�D is defined as the distortion of current codebook minus the

distortion of previous codebook. The perturbation is accepted if

e
��D

T̂n � r� (����)

where r is a random value generated uniformly on the interval [0,1].

Step 4: If the distortion of the current codebook reaches the desired value or the iterative number

n reaches the predetermined value, then terminate the program; otherwise, set n = n + �

and go to step 2.

This algorithm starts with an initial temperature T̂�. The temperature sequence T̂�, T̂�, T̂�,... are

positive numbers which is called an annealing schedule where

T̂� � T̂� � T̂���� (����)

and

lim
n�� T̂n = �� (����)

If the resulting codebook decreases the distortion, the movement of the data is accepted. If

the distortion is increased, it is accepted with the condition as in Eq. 5.10. Obviously, the

perturbation is accepted easily for the earlier temperature and it is difficult to be accepted at

115

the final temperature. By accepting the perturbation for positive�D in some probability gives

the opportunity for jumping off the local optimum. The performance of the codebook design

depends on the annealing schedule.

5.1.5 Stochastic Relaxation Approach

In the previous subsection, the basic algorithm of simulated annealing in codebook design is

to perturb codevectors by moving the training data vector from its current partitioned set to a

different partitioned set. At each iteration of the simulated annealing algorithm, the perturbation

is performed if and only if Eq. 5.10 is satisfied. This is called a stochastic relaxation algorithm

(Zeger & Gersho, 1989; Zeger et al., 1992) if the perturbation is applied by adding some values

to the codevectors definitely for each iteration. The stochastic relaxation algorithm is depicted

as follows:

Step 1: Select initial codevectors C(�)
i randomly, i = �� �� ����N. Set iterative numberm = � and

D� = �.

Step 2: Assign the data vector Xl to partitioned set Si if d(Xl� Ci) � d(Xl � Cj), i �= j, j =

�� �� ���� N. Calculate the overall distortion Dm.

Step 3: If jDm���Dmj
Dm

�
, then terminate the program; otherwise, set m = m + �.

Step 4: Compute the centroid for each partitioned set,

Ci =
�

jSij
X
Xj�Si

Xj (����)

where jSij denotes the number of training data vectors in the partitioned set S i.

Step 5: Perturb the codevector using

Cm
i = Cm

i + Si(Tm)� (����)

Go to step 2.

116

Si(Tm) is a perturbation function in which the value of the temperature Tm decreases with the

increase of the iterative number m. In previous work (Zeger & Gersho, 1989), Si(Tm) is a

uniform distribution with zero-mean and Tm is the range.

5.1.6 Fuzzy C-means Clustering Algorithm

The GLA algorithm, PNN algorithm, simulated annealing method and stochastic relaxation

approach in codebook design assign each training data vector to one and only one cluster, i.e.,

the training data vectors are partitioned into disjoint sets. However, each training data vector

can be assigned a membership function indicating the degree of its “belongingness” to each

cluster rather than assign it to only one cluster because some clusters are not compacted and

well separated (Dunn, 1974; Bezdek, 1973). Assume that T and N are the number of training

data vectors and the number of codevectors. The object function of the fuzzy C-means (FCM)

clustering algorithm (Bezdek, 1973) is to

minimize

J(U�C) =
TX
i=�

NX
j=�

u�ijDij� (����)

subject to
NX
j=�

uij = �� � � i � T� (����)

whereDij is the squared Euclidean distortion between the training data vectorX i and the centroid

Cj, uij is the value of membership for the training data vector Xi belonging to the cluster j,

U = fuijg is T
N matrix and C = fC�� C�� ���� CNg is the codebook.

The fundamental FCM clustering algorithm can be stated as follows:

Step 1: Set m = � and select the membership function U(�). Here m is the current number of

iterations.

Step 2: Calculate C(m) by using

117

Cj(m) =

PT

i=� u
�
ijXiPT

i=� u
�
ij

� � � j � N� (����)

Step 3: If Din(m) = �, then uin(m + �) = � and uij(m + �) = � for j �= n; otherwise, calculate

U(m + �) by using

uij(m + �) =
�PN

n=�
Dij(m)
Din(m)

� � � i � T� �� j � N� (����)

Step 4: Terminate the program and take C(m) = fC�(m)� C�(m)� ���� CN(m)g as the final code-

book if maxjuij(m)� uij(m + �)j � �, � � i � T, � � j � N; otherwise, set m = m + �

and go to step 2. Here � is a small predefined value.

5.1.7 Path-following Approach

The path-following approach, also known as continuation method for vector quantizer (CMVQ)

design was proposed by (Chung et al., 1993). Suppose that there are T input vectors in the

training set S = fxpjp = �� �� ���� TgandN codevectors in the codebookC = fCiji = �� �� ����Ng,

where T� N. The sum of the squared errors within the partitioned sets is

D(S� C) =
TX
p=�

X
Xp�Si

d(Xp� Ci)� (����)

where d(Xp� Ci) is the squared Euclidean distortion betweenXp andCi, Si = fXp
Sjd(Xp� Ci) �
d(Xp� Cj)� �i �= jg and � � i � N. The centroid computation step of the GLA algorithm is

found by evaluating 	D(S
C)
	Ci

= �, i.e.,

X
Xp�Si

Xp � jSij�Ci = �� (����)

where jSij is the number of training vectors belonging to the partitioned set S i. If a training set

SN consists of onlyN vectors randomly chosen from S, by evaluating 	D(SN
C)
	Ci

= �, the following

equation is obtained:

118

X
Xp�S

N
i

Xp � jSNi j�Ci = �� (����)

where SNi = fXp
S
Njd(Xp� Ci) � d(Xp� Cj)�i �= jg. The homotopy function (Stonick &

Alexander, 1992; Richter & DeCarlo, 1983) for VQ codebook design can be defined as

h(Ci � t) = (�� t)[
X
Xp�S

N
i

Xp � jSNi j�Ci] + t[
X
Xp�Si

Xp � jSij�Ci]� (����)

By setting Eq. 5.22 to zero, the iterative algorithm for the codevector is derived as

Ci =
�

jSNi j + tfjSij � jSNi jg
(
X
Xp�S

N
i

Xp + t
X

Xp�fSi�SNi g
Xp)� (����)

The homotopy parameter t is a weighting factor in this centroid computation step. It can be set

to a linear homotopy parameter sequence ftn = n��tjn = �� �� ���� �
�t
g. If n = �, it is the initial

step as in Eq. 5.21. If n = �

�t
, it is the final result as in Eq. 5.20. By adapting n from 0 to

n = �
�t

, the final codevectors are generated.

5.1.8 Deviation Reduction Algorithm

The deviation reduction (DR) algorithm was proposed by (Chen et al., 1995). This algorithm

generates N codevectors from the training data X = fX�� X�� ���� XTg of k-dimensional vectors

with T� N. These training data are grouped intoN clusters first usingK-d tree withN buckets

which is generated from the greatest co-ordinate variance (Bentley, 1975). Each cluster is

represented by the number of data ni belonging to this cluster and the centroid C i of this cluster,

i = �� �� ����N. The weighted distances defined in Eq. 5.24 are calculated.

di
j =
ninjjCi � Cjj�

ni + nj

� (����)

where i = �� �� ����N and j = i + �� i + �� ���� N.

The mean of these N(N��)
�

weighted distances among all clusters is

119

d̄ =
�

N(N� �)

NX
i=�

NX
j=�

di
j� (����)

The difference between the di
j and d̄ indicates the deviation of the cluster Ci and Cj from the

mean. Based on the assumption that the small value of deviation leads to the better optimum,

the codevector Ci can be generated iteratively by

Ci = Ci + �(di
j � d̄)(Cj � Ci)� (����)

where i = �� �� ����N, j = �� �� ����N and � is a small positive constant. Eq. 5.26 is applied to

adapt codevector so as to reduce the deviation.

5.2 Codebook Design Using Genetic Algorithms

It has been shown (Lloyd, 1982) that two conditions are necessary but not sufficient for the

existence of an optimal minimum mean squared error (MSE) quantizer :

(1) the codewords should be the centroids of the partitions of the vector space.

(2) the centroid is the nearest neighbour (NN) for the data vectors in the partitioned set.

These conditions have been applied to codebook design by Linde et al. in the generalized Lloyd

algorithm (GLA) (Linde et al., 1980). Since these conditions are necessary but not sufficient,

there is no guarantee that the resulting codebook is optimal. The generalized Lloyd algorithm

is widely used in codebook generation for vector quantization. It is a descent algorithm in the

sense that at each iteration the average distortion is reduced. For this reason, GLA tends to get

trapped in local minima. The performance of the GLA is dependent on the number of minima

and on the choice of the initial conditions.

Genetic algorithms refer to a model introduced and investigated by Holland (Holland, 1975)

and by students of Holland. They are computer search methods whose mechanics are based on

those of natural genetics. A genetic algorithm is any population-based model that uses selection

120

and recombination operators to generate new sample points in a search space. This evolutionary

procedure yields an effective search in a broad range of problems. Genetic algorithms (Gold-

berg, 1989; Davis, 1991) have been proven to be powerful methods in search, optimization

and machine learning. They encode a potential solution to a specific problem on a simple

chromosome-like data structure and apply recombination operators to these structures in order

to achieve optimization. Genetic algorithms have been used in VLSI layout, communication

network design, medical imaging, automatic control and machine learning, facility layout prob-

lem and the optimization of generalised assignment problem.

This chapter describes the GA-GLA1 and GA-GLA2 algorithms (Pan et al., 1995c; Pan et al.,

1996d) derived by applying genetic algorithms to codebook design to produce better optimum

VQ codebook vectors. The four main steps involved in genetic algorithms are evaluation, selec-

tion, crossover and mutation. It is referred to as GA-GLA1 algorithm if the evaluation, selection

and crossover are adopted in combination with GLA to produce a superior codebook design

algorithm.

The fitness of genetic algorithms can be represented by the mean squared error (MSE). In the

VQ operation, a chromosome is designated as the centroid of the cluster. The individual of the

population is the codebook. As shown in Fig. 5.1, the proposed GA-GLA1 algorithm consists

of the following steps:

Step 1: Initialization – Calculate the central chromosome (centroid)G� from the training vectors

Xi (i=1,2,...,T). Select N chromosomes Gj (j=1,2,...,N) for every member of the popula-

tion using random number generator. Here N is the codebook size, so that each codebook

consists of N single-vector chromosomes. P sets of N chromosomes are generated in this

step, P is the population size.

Step 2: Update – GLA is used to update N chromosomes for every member of the population.

121

Step 3: Evaluation – Fitness (or MSE) of every member of the population is evaluated in this

step.

Step 4: Selection – The survivors of the current population are decided from the survival rate

Ps. A random number generator is used to generate random numbers whose values are

between 0 and 1. If the random number is smaller than Ps, this codebook survives;

otherwise, it does not survive. The best fitness of the population always survives. Pairs of

parents are selected from these survivors and undergo a subsequent crossover operation

to produce the child chromosomes that form a new population in the next generation.

Step 5: Crossover – The chromosomes of each survivor are sorted in decreasing order according

to the squared error between the chromosomeGj of the current population and the central

chromosome G�. Without sorting here, it is difficult to jump out of the local minima.

The 1-point or 2-point crossover technique (Goldberg, 1989) is used to produce the next

generation from the selected parents.

Step 6: Termination – Step 2 to step 5 are repeated until the predefined number of genera-

tions have been reached. After termination, the optimal codebook is generated from N

chromosomes in the best member of the current population.

As shown in Fig. 5.2, the GA-GLA2 algorithm is similar to the GA-GLA1 algorithm except

that the stochastic relaxation scheme is applied to the mutation step in the codebook generation.

A random value is added to selected genes in the mutation step. This perturbation gives the

GA-GLA2 algorithm more opportunity to jump off the local optimum. The added value of the

perturbation can be a normal distribution, uniform distribution or any other possible distributions.

The proposed GA-GLA2 algorithm is stated as the following steps:

Step 1: Initialization – Calculate the central chromosome (centroid)G� from the training vectors

Xi (i=1,2,...,T). Select N chromosomes Gj (j=1,2,...,N) for every member of the popula-

tion using random number generator. Here N is the codebook size, so that each codebook

122

start

GLA

selection

max-gen
no

yes

end

evaluation

crossover

Figure 5.1: Flowchart of GA-GLA1 algorithm

consists of N single-vector chromosomes. P sets of N chromosomes are generated in this

step, P is the population size.

Step 2: Update – GLA is used to update N chromosomes for every member of the population.

Step 3: Evaluation – Fitness (or MSE) of every member of the population is evaluated in this

step.

Step 4: Selection – The survivors of the current population are decided from the survival rate

Ps. A random number generator is used to generate random numbers whose values are

between 0 and 1. If the random number is smaller than Ps, this codebook survives;

otherwise, it does not survive. The best fitness of the population always survives. Pairs of

123

parents are selected from these survivors and undergo a subsequent crossover operation

to produce the child chromosomes that form a new population in the next generation.

Step 5: Crossover – The chromosomes of each survivor are sorted in decreasing order according

to the squared error between the chromosomeGj of the current population and the central

chromosome G�. The 1-point or 2-point crossover technique is used to produce the next

generation from the selected parents.

Step 6: Mutation – The genes (or features) in the chromosomes of the population are mutated

according to the mutation rate Pm. Here, the total number of mutations is set to population

size P * number of chromosomes N * mutation rate Pm. When one chromosome is

selected to be mutated from random generation number, the new genes are generated from

the old genes by adding the random value �n. Here � � n � k and k is the number of

genes in one chromosome; �����n�
t � �n � ����n�

t, �n is the standard deviation of

the nth dimension of the vector, t is the number of generations processed at present and

� � �.

Step 7: Termination – Step 2 to step 5 are repeated until the predefined number of genera-

tions have been reached. After termination, the optimal codebook is generated from N

chromosomes in the best member of the current population.

Genetic algorithms have previously been applied to VQ codebook generation (Delport &

Koschorreck, 1995). Although they use a genetic algorithm, it differs from the GA-GLA1 and

GA-GLA2 algorithms considerably (Pan et al., 1996e). The main differences are as follows.

Firstly, Delport and Koschorreck use the codebook indices of the training data as the coding

string, the length of the coding string is thus the number of the training data points in the training

set. In the GA-GLA1 and GA-GLA2 algorithms, the codebook vectors are used as the coding

string, the length of the coding string is thus equivalent to the number of codewords. This means

that the length of the coding string is much shorter in the GA-GLA1 and GA-GLA2 algorithms.

124

max-gen

start

evaluation

selection

crossover

mutation

end

GLA

no

yes

Figure 5.2: Flowchart of GA-GLA2 algorithm

Theoretically and practically, it is difficult to converge to a more optimal value if the length of

the coding string is too long.

In addition, in the GA-GLA1 and GA-GLA2 algorithms, the coding strings of the initial popula-

tion can be assigned randomly from the training data, because it can be converged to an optimal

value easily under any initial conditions. Delport and Koschorreck use the binary splitting

method to derive the best initial population to improve their algorithm.

Finally, a sorting technique is used based on the central value of the training data to facilitate

125

convergence to improved optima. This is unique to the GA-GLA1 and GA-GLA2 algorithms.

To sum up, as shown in Fig. 5.3 and Fig. 5.4, Delport and Koschorreck apply a genetic algorithm

to adapt the codebook index of points in the training data, whereas the genetic algorithms are

applied to GA-GLA1 and GA-GLA2 algorithms to adapt the value of the codebook vector.

2 T31

.

Codeword Index

Coding String

Number of Training Data

Figure 5.3: Coding String of Delport’s Algorithm

2 31

.

Coding String

N

Value of Codebook Vector

Number of Codewords

Figure 5.4: Coding String of GA-GLA1 and GA-GLA2 Algorithms

5.3 Experiments and Results

Cepstrum coefficients are used as the test features in the codebook generation experiments.

The test materials for these experiments consist of 9 words recorded from one male speaker.

The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients (including

126

energy) are computed over 20 ms-wide frames with 5 ms frame shift. A total of 817 analyzed

frames are used in the codebook generation experiments.

Firstly, experiments are carried out to test the performance of GA-GLA1, GA-GLA2 and GLA

algorithms for 32 and 64 codewords. 1-point and 2-point crossover techniques are tested in

the experiments. The performance is measured in terms of mean squared error (MSE) and is

averaged from 10 runs. The parameter values used for population size P, predefined number of

generations, the survival rate Ps, the mutation rate Pm and � are 20, 100, 0.5, 0.1 and 0.9. As

shown in Table 5.1, 5.2, 5.3 and 5.4, in any run, the mean squared error of the GA-GLA1

algorithm and the GA-GLA2 algorithm is smaller than the GLA algorithm. Table 5.5 and 5.6

show that the average distortions of 10 runs for codebooks generated by these new algorithms

are much better than those by the GLA algorithm. The 2-point crossover technique is better

than the 1-point crossover technique and the GA-GLA2 algorithm is better than the GA-GLA1

algorithm in these experiments. The mean squared error decreases by more than 9% using these

new algorithms instead of the GLA algorithm.

Fig. 5.5 depicts the mean squared error (MSE) versus the population size for the GA-GLA1

algorithm using single point crossover and the number of codewords is 32. The most suitable

population size is 30 which can be determined from this experiment. The mean squared error

versus the number of generations for the GA-GLA1 algorithm using single point crossover and

50 individuals of population is shown in Fig. 5.6 for 32 codewords. This figure is generated

from the data of only one run. The mean squared error remains constant for several generations.

This means that the GLA algorithm is not useful in decreasing the mean squared error for the

best population and the genetic algorithm can not perform better result for the other individuals

of the population at the current generation. But after some generations, the genetic algorithm

will cause the other individuals of the population to generate better codewords to decrease the

mean squared error. The more generations for which this algorithm operates, the lower the mean

squared error it generates but the running time will increase with the number of generations.

127

Another experiment tests the performance of the GA-GLA1, GA-GLA2 algorithms and the

stochastic relaxation approach for generating 8 codewords. The single point crossover technique

is used in this experiment. The parameter values used for population size P, predefined number

of generations, the survival rate Ps, the mutation rate Pm and � are 20, 100, 0.5, 0.1 and 0.9. The

results of ten runs are shown in Table 5.7. Both the GA-GLA1 and GA-GLA2 algorithms have

similar performance to the stochastic relaxation approach in this experiment. The mean squared

error of the global optimum is approximately 0.5832.

From the experimental results, the performance of the proposed GA-GLA1 algorithm and GA-

GLA2 algorithm are significantly better than for the GLA algorithm. These new algorithms can

be extended by using powerful mutation techniques, chromosome encoding techniques and the

other powerful selection and crossover techniques.

GLA 0.28522
Seed GA-GLA1 1-point crossover GA-GLA1 2-point crossover

1 0.2683 0.2602
2 0.2549 0.2585
3 0.2622 0.2583
4 0.2593 0.2562
5 0.2588 0.2584
6 0.2592 0.2586
7 0.2580 0.2593
8 0.2566 0.2584
9 0.2579 0.2566
10 0.2595 0.2573

Table 5.1: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 32 codewords

128

GLA 0.28522
Seed GA-GLA2 1-point crossover GA-GLA2 2-point crossover

1 0.2609 0.2605
2 0.2574 0.2558
3 0.2643 0.2560
4 0.2560 0.2578
5 0.2566 0.2575
6 0.2559 0.2564
7 0.2595 0.2569
8 0.2598 0.2566
9 0.2572 0.2558
10 0.2568 0.2544

Table 5.2: Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 32 codewords

GLA 0.187098
Seed GA-GLA1 1-point crossover GA-GLA1 2-point crossover

1 0.171316 0.168194
2 0.171781 0.171443
3 0.169128 0.167743
4 0.172415 0.168878
5 0.168015 0.167335
6 0.174766 0.169959
7 0.172679 0.172166
8 0.171191 0.170286
9 0.171656 0.170283
10 0.171595 0.171260

Table 5.3: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 64 codewords

129

GLA 0.187098
Seed GA-GLA1 1-point crossover GA-GLA1 2-point crossover

1 0.170653 0.168353
2 0.168776 0.169391
3 0.169161 0.168561
4 0.171857 0.168010
5 0.170882 0.165990
6 0.166766 0.168568
7 0.169233 0.168356
8 0.171477 0.171594
9 0.173121 0.168429
10 0.168244 0.172010

Table 5.4: Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 64 codewords

Algorithm MSE
GLA 0.28522
1-point crossover

GA-GLA1 without mutation 0.25947
1-point crossover

GA-GLA2 with mutation 0.25844
2-point crossover

GA-GLA1 without mutation 0.25817
2-point crossover

GA-GLA2 with mutation 0.25677

Table 5.5: Performance comparison of GA-GLA1, GA-GLA2 algorithms and GLA for 32
codewords

Algorithm MSE
GLA 0.187098
1-point crossover

GA-GLA1 without mutation 0.171554
1-point crossover

GA-GLA2 with mutation 0.170017
2-point crossover

GA-GLA1 without mutation 0.169755
2-point crossover

GA-GLA2 with mutation 0.168926

Table 5.6: Performance comparison of GA-GLA1, GA-GLA2 algorithms and GLA for 64
codewords

130

Seed stochastic relaxation GA-GLA1 GA-GLA2
1 0.5834 0.5838 0.5832
2 0.5876 0.5838 0.5832
3 0.5832 0.5832 0.5832
4 0.5832 0.5832 0.5832
5 0.5832 0.5832 0.5832
6 0.5832 0.5838 0.5835
7 0.5875 0.5832 0.5832
8 0.5832 0.5839 0.5832
9 0.5832 0.5832 0.5832
10 0.5832 0.5832 0.5832

Table 5.7: Mean squared errors for ten runs of GA-GLA1, GA-GLA2 algorithms and stochastic
relaxation approach for 8 codewords

131

GA-GLA1 single point crossover

Population Size

MSE

0.256

0.258

0.260

0.262

0.264

0.266

0.268

5040302010

Figure 5.5: Mean squared error of GA-GLA1 algorithm for different population size

132

0 50 100

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

0.44

MSE

Number of Generations

GA-GLA1

Single Point Crossover

Population Size = 50

Figure 5.6: Mean squared error of GA-GLA1 algorithm for different number of generations

133

Chapter 6

Improved Algorithms for Codebook
Index Assignment

6.1 Introduction

Vector quantization (VQ) (Gray, 1984) is very efficient for data compression of speech and

images where the binary indices of the optimally chosen codevectors are sent. As shown in

Fig. 6.1, a vector X = fx�� x�� ���� xkg consisting of k samples of information source in the

k-dimensional Euclidean space Rk is sent to the vector quantizer. The k-dimensional vector

quantizer with the number of codevectors N is defined as follows by using the reproduction

alphabet consisting of N codevectors, C = fC�� C�� ���� CNg, the partitioned set consisting of

subspaces of the k-dimensional Euclidean space Rk, S = fS�� S�� ���� SNg, and the mapping

function Q(�):

Q(X) = Ci� if X
Si� (���)

The sets C and the partitioned set Si satisfy

�Ni=� Si = Rk� (���)

and

Si � Sj = 	 if i �= j� (���)

The output of the vector quantizer is the index i of the codevector Ci which satisfies

134

i = argminp

kX
l=�

(xl � clp)�� (���)

Only the index i is transmitted over the channel to the receiver. The transmitting rate is defined

as

m = log�N bits�vector� (���)

and

r = m�k bits�sample� (���)

The performance of vector quantizer can be evaluated by the squared Euclidean distortion per

symbol given by

Ds =
�

k

NX
i=�

Z
Si

P(X)
kX
l=�

(xl � cli)
�dX� (���)

where P(X) is the probability density function of X.

The channel noise will induce channel errors in the communication. The effect of channel

errors is to cause errors in the received indices. Thus, distortions are introduced in the decoding

step. Distortion due to an imperfect channel can be reduced by assigning suitable indices

to codevectors. If the number of codevectors is N, the possible combination of indices to

codevectors is N!. To test N! assignments is an NP-hard problem.

6.1.1 Simulated Annealing for Optimization of Index Assignment

As described previously, the optimization of index assignment for vector quantizer is compu-

tationally intractable for large codebook size even if very powerful computer is used because

there exist N! possible ways to arrange the indices of codevectors for N codevectors. In order

to avoid the full search procedure, a simulated annealing method has been applied (Kirkpatrick

et al., 1983; Bohachevsky et al., 1986) to the codevector index assignment of vector quantizers

for noisy channels (Farvardin, 1990). The channel model is assumed to be a binary symmetric

channel with bit error probability �, i.e.,

135

Channel Noise

Destination

Source Encoder

Decoder

= Q(X)Ci

j

CiX i

Vector Quantizer

C j

Figure 6.1: Block diagram of VQ communication system for noisy channel

P(b(cj)�b(ci)) = (�� �)m�H(b(ci)
b(cj))�H(b(ci)
b(cj))� (���)

where b(ci), i = �� �� ����N, is the index with m bit string of codevector Ci, P(b(cj)�b(ci)),

i� j = �� �� ����N, denote the probability that index b(cj) is received given the index b(ci) is sent

and H(b(ci)� b(cj)) denote the Hamming distance between b(ci) and b(cj).

In this previous work (Farvardin, 1990), the channel bit error probability � is assumed to be

sufficiently small (m�
 �), then the error probability due to more than one bit error can be

ignored and the bit error probability of the channel model can be expressed as

P(b(cj)�b(ci)) =

���������
��������

�� H(b(ci)� b(cj)) = �

��m�� H(b(ci)� b(cj)) = �

�� H(b(ci)� b(cj)) � �

(���)

Based on this channel model, the average distortion per source sample caused by the channel

noise for a given assignment of indices, b = (b(c�)� b(c�)� ���� b(cN)), can be expressed as

136

Dcs =
�

k

NX
i=�

NX
j=�

P(ci)P(b(cj)�b(ci))d(ci� cj) (6.10)

=
�

k

NX
i=�

P(ci)
X

j:H(b(ci)
b(cj))=�

d(ci� cj)� (6.11)

and the ensemble average distortion is derived as

D̄cs =
�

N!
�
�

k

NX
i=�

P(ci)
X
allb

X
j:H(b(ci)
b(cj))=�

d(ci� cj) (6.12)

=
�m

k(N � �)

NX
i=�

P(ci)
NX
j=�

d(ci� cj)� (6.13)

The algorithm using simulated annealing for optimization of index assignment for vector quan-

tizer can be stated as follows (Farvardin, 1990):

Step 1: Choose an initial state b of the indices for codevectors at random and set the initial

temperature T = T�.

Step 2: Randomly choose another state b� (perturbation of state b) and calculate �Dcs =

Dcs(b�) � Dcs(b). If �Dcs � �, replace b by b�; otherwise, replace b by b� with

probability e
��Dcs

T and go to step 3.

Step 3: If the number of average distortion drops exceeds a prescribed number or if too many

unsuccessful perturbations occur, go to step 4.

Step 4: Terminate the program if the temperature T is below some prescribed freezing temper-

ature Tf or a stable state is reached; otherwise, lower the temperature T and go to step

2.

Note that the simulated annealing approach in the optimization of codebook index assignment

will not affect the quantization accuracy in the error-free case because this method does not

change the value of codevectors.

137

6.1.2 Pseudo-Gray Coding

Pseudo-Gray coding (Zeger & Gersho, 1990; Zeger & Gersho, 1987) provides a redundancy-

free error protection scheme for vector quantization of analogue signals when the binary indices

of the signal codevectors are sent on a discrete memoryless channel. The main idea of Pseudo-

Gray coding is to calculate the expected distortion due to the single bit error in the index of

codevectors for every index swapping and swap the index pair that makes the largest improvement

in distortion. The approach of Pseudo-Gray coding is stated as follows:

Step 1: Initialization – Assign indices to the codevectors randomly.

Step 2: Sorting – Sort the codevectors in the decreasing order of the expected distortion. Set

i = ��.

Step 3: Distortion Reduction – Set i = i + �. For j = i + � to N, calculate the distortion

reduction after swapping the index i and j. Let gain = the maximum distortion reduction

for swapping the index i and j.

Step 4: Switching – If gain � 0, then switch index i and j and go to step 2.

Step 5: Termination – If i = N� �, then terminate the program; otherwise, go to step 3.

6.1.3 Channel Optimized Vector Quantization

An improvement of vector quantizer performance against channel noise can be achieved by taking

the error characteristics of the transmission channel into account in the codebook design as well

as in the quantization process. Hence, the expected error of the reconstructed codevector in the

decoder can be minimized instead of the irrelevant quantization error in the encoder (Kumazawa

et al., 1984; Farvardin, 1990; Balss et al., 1995). If the squared Euclidean distortion is used, the

performance can be evaluated using Eq. 6.14 which is the expected squared error per sample in

the decoder provided that index b(cj) is received given that index b(ci) is sent.

138

De =
�

k

NX
i=�

NX
j=�

P(b(cj)�b(ci))
Z
Si

P(X)
kX
l=�

(xl � clj)
�dX� (����)

where P(X) is the probability density function of X.

In codebook generation for channel optimized vector quantization, the indices as well as the

codevectors are modified together. The index of the training data vector X is assigned using

i� = argmini

NX
j=�

P(b(cj)�b(ci))
kX
l=�

(xl � clj)
�� (����)

and the codevector is modified using

Cj =

PN

i=� P(b(cj)�b(ci))
P

l:Xl�Si
XlPN

i=� P(b(cj)�b(ci))jSij
� (����)

where jSij is the number of training data vectors belonging to the partitioned set S i.

When the codevector C = fC�� C�� ���� CNg is given, the partitioned set Sl minimizing

Eq. 6.14 is given by

Sl = fXj
NX
j=�

P(b(cj)�b(cl))
kX

m=�

(xm�cmj)� �
NX
j=�

P(b(cj)�b(ci))
kX

m=�

(xm�cmj)�� for all i �= lg�
(����)

When the codevectors Cj� j = �� �� ����N, partitioned sets Sj� j = �� �� ����N and the training data

vectors Xt� t = �� �� ���� T are given, the mean squared error per sample in the decoder can be

evaluated as follows:

De =
�

kT

TX
t=�

NX
j=�

P(b(cj)�b(ci(t)))
kX
l=�

(xlt � clj)
�� (����)

where b(ci(t)) is the index of the bit string to which the tth training data vector X t belongs and

T is the total number of training data vectors.

In the training process, Eq. 6.16 and Eq. 6.17 are applied iteratively until a termination criterion

is met.

139

6.2 Average Distortion

N codevectors Ci, i = �� �� ����N, are assigned codevector indices with an m bit string b(ci),

whereN = �m. The distortion between codevectorCi andCj is given by a non-negative distortion

measure d(ci� cj). Usually, the Euclidean metric is used. Let P(b(cj)�b(ci)), i� j = �� �� ���N,

denote the probability that the index b(cj) is received given the index b(ci) is sent. Assuming

random assignment of the codevector indicesb = (b(c�)� b(c�)� ���� b(cN)), the average distortion

for any possible bit errors caused by the channel noise is given by

Dc =
�

N!

NX
i=�

P(ci)
X
b

NX
j=�

P(b(cj)�b(ci))d(ci� cj)� (����)

We assume that the channel is a memoryless binary symmetric channel with bit error probability

�. Thus, the error probability is �l(�� �)m�l, where l is the number of bits in which b(ci) and

b(cj) differ. Let H(b(ci)� b(cj)) denote the Hamming distance between b(ci) and b(cj). The

average distortion can be written as

Dc =
�

N!

NX
i=�

P(ci)
NX
j=�

d(ci� cj)
mX
l=�

X
b:H(b(ci)
b(cj))=l

�l(�� �)m�l� (����)

There are N choices of b(ci),

�
BBB�

m

l

CCCA choices of b(cj) and (N � �)! choices of the rest of b

given l. Eq. 6.20 can be expressed as

Dc =
�

N!

NX
i=�

P(ci)
NX
j=�

d(ci� cj)
mX
l=�

�l(�� �)m�lN

�
BBB�

m

l

CCCA (N� �)! (6.21)

=
�

N� �

NX
i=�

P(ci)
NX
j=�

d(ci� cj)
mX
l=�

�
BBB�

m

l

CCCA �l(�� �)m�l� (6.22)

140

Since � = f� + (�� �)gm =
Pm

l=�

�
BBB�

m

l

CCCA �l(�� �)m�l,

Dc =
�

N� �

NX
i=�

P(ci)
NX
j=�

d(ci� cj)(��

�
BBB�

m

�

CCCA ��(�� �)m) (6.23)

=
�� (�� �)m

N� �

NX
i=�

P(ci)
NX
j=�

d(ci� cj) (6.24)

After the indices are assigned to the codevectors, the expectation of distortion for the transmission

of indices b(ci), i = �� �� ����N, can be written as

D =
NX
i=�

P(ci)
mX
l=�

�l(�� �)m�l
X

b(cj)�Nl(b(ci))

d(ci� cj) (����)

where Nl(b(ci)) = fb(cj)
I� H(b(ci)� b(cj)) = lg, is the lth neighbour set of b(ci).

6.3 Multiple Global Optima

Assume f(ci) = bi = (bi�� bi�� ���� bim) is the function of index assignment. Here bij
f�� �g,

i = �� �� ����N, j = �� �� ����m. If f is globally optimal, then so is g defined by

g(ci) = (ai�� ai�� ���� aim)� (����)

where

aij = bip(j) � qip(j),

qij
f�� �g,

p is a permutation of f�� �� ����mg.

There are �m possibilities for qij, j = �� �� ����m, and m! possibilities for p. Thus, at least m!N

global optima exist for the problem of codebook index assignment. So, an N! search space can

141

be reduced to an (N��)!
m! search space. If the number of codevectors is 8 and the globally optimal

assignment of the codevector indices b = (���� ���� ���� ���� ���� ���� ���� ���), then there

are 8 possible combinations for qij, j = �� �� �, i.e., H(b(ci)� b(cl)) = H(b(ci) � s� b(cl) � s),

i = �� �� ���� �, l = �� �� ���� � and s
f���� ���� ���� ���� ���� ���� ���� ���g which is depicted

in Table 6.1. There are also 6 possibilities of using a permutation in the bit string for each

possible combination in Table 6.1. Two examples are shown in Table 6.2 and Table 6.3. This

property can be applied to algorithms for codebook index assignment, for example, by setting

one index to one codevector at the initial step, and holding this codevector index assignment until

the termination of these algorithms, i.e., reduce the search space from N! to (N � �)! without

reducing the possibility of producing a better optimum.

globally optimal indices 000 001 010 011 100 101 110 111
� 000 000 001 010 011 100 101 110 111
� 001 001 000 011 010 101 100 111 110
� 010 010 011 000 001 110 111 100 101
� 011 011 010 001 000 111 110 101 100
� 100 100 101 110 111 000 001 010 011
� 101 101 100 111 110 001 000 011 010
� 110 110 111 100 101 010 011 000 001
� 111 111 110 101 100 011 010 001 000

Table 6.1: Example of �� possibilities for qij, j = �� �� �, i = �� �� ���� �

bit position globally optimal indices
123 000 100 010 110 001 101 011 111
132 000 010 100 110 001 011 101 111
213 000 100 001 101 010 110 011 111
231 000 010 001 011 100 110 101 111
312 000 001 100 101 010 011 110 111
321 000 001 010 011 100 101 110 111

Table 6.2: Example of �! possibilities for the permutation of bit strings b=(000, 001, 010, 011,
100, 101, 110, 111)

142

bit position globally optimal indices
123 100 000 110 010 101 001 111 011
132 010 000 110 100 011 001 111 101
213 100 000 101 001 110 010 111 011
231 010 000 011 001 110 100 111 101
312 001 000 101 100 011 010 111 110
321 001 000 011 010 101 100 111 110

Table 6.3: Example of �! possibilities for the permutation of bit strings b=(001, 000, 011, 010,
101, 100, 111, 110)

6.4 Algorithm

Genetic algorithms (Holland, 1975; Goldberg, 1989; Fang, 1994) are adaptive methods which

can be used in search and optimization problems. Here, a parallel genetic algorithm (Cohoon

et al., 1987; Pettey et al., 1987; Shonkwiler, 1993) is used to optimize the codevector index

assignment. The fitness is the expectation of distortion as in Eq. 6.25. The chromosome is

the index string. The proposed algorithm consists of the following steps (Pan et al., 1996a):

Step 1: Initialization – Randomly assign the indices (i.e. 0 to N� �) to every individual of the

population. A chromosome is composed of N indices. Separate the population into G

groups. G sets of P members are generated in this step, where P is the population size for

each group. Without loss of generality, set G = �n.

Step 2: Evaluation – The fitness of every individual of the population in each group is evaluated

in this step.

Step 3: Communication – Send the top best B individuals of the jth group to the qth groups

to substituteB individuals in each receiving group randomly for every R generations, i.e.,

receive some information from the other groups but keep the same population size. Here,

q = j� �i, j = �� �� ����G� � and i = �� �� ���� n� �.

Step 4: Selection – Set the number of survivors within each group to P � Ps where Ps is the

survival rate. For r = � to P � Ps, randomly choose M individuals from the group and

143

select the best of these M individuals as a survivor. This selection scheme is also used in

the Crossover step and Mutation step to select parents and candidates for crossover and

mutation.

Step 5: Crossover – The uniform order-based crossover technique (Davis, 1991) is used to

produce the next generation from the selected parents for each group. P � Pc individuals

for each group are generated in this step, where Pc is the crossover rate. Several gene

positions of the chromosome are chosen randomly and the order in which these genes

appear in the first parent is imposed on the second parent to produce offspring. The genes

in the other positions are the same as the first parent.

Step 6: Mutation – The genes (or indices) in the chromosomesof the population are mutated

according to the mutation rate Pm. Here, the total number of mutations for each group

is set to group population size P * mutation rate Pm. The mutation is only operated by

exchanging two indices randomly in each group. Here, Ps + Pc + Pm = 1.

Step 7: Termination – Step 2 to step 6 are repeated until the predefined fitness or the number

of generations have been reached. After termination, the optimal codevector indices are

generated from the best individual for all groups.

6.5 Experimental Results

The test materials for these experiments consisted of 200 words recorded from one male speaker.

The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients (including

energy) are computed over 20 ms-wide frames with 5 ms frame shift. A total of 20,030 analyzed

frames are used to generate 8, 16, 32 and 64 codevectors for the experiments of codevector index

assignment.

Experimentthe were carried out to test the performance of the new algorithm and the average

distortion of the random assignment for 8, 16, 32 and 64 codevectors. The performance is

measured in terms of the average distortion using Eq. 6.25 compared with the average distortion

144

of the random assignment for any bit error using Eq. 6.24. The inverse of the average distortion

is used as the fitness in this new algorithm to test the worst case of the random assignment.

The distribution of the codevector probability is set to a uniform distribution. The parameter

values used for the group population size P, the number of groups G, the predefined number

of generations, the survival rate Ps, the crossover rate Pc, the mutation rate Pm, the number of

individuals for selection M, the number of top best for communication B and the number of

generations for communicationR are 50, 8, 500, 0.5, 0.4, 0.1, 3, 1 and 50 respectively. Table 6.4

shows the average distortion with 0.01 bit error probability for 10 runs. The new algorithm

reduces the distortion by more than 59 % compared with the random assignment and better than

75 % compared with the worst case for 64 codevectors and 0.01 bit error probability. For 0.1 bit

error probability, the average distortion for 10 runs is shown in Table 6.5. The new algorithm

reduces the distortion by more than 51 % compared with the random assignment and better than

66 % compared with the worst case for 64 codevectors and 0.1 bit error probability. The detail

results of this algorithm for 0.01 and 0.1 bit error probability are depicted in Table 6.6, 6.7, 6.8,

6.9, 6.10, 6.11, 6.12 and 6.13.

The experimental results of the parallel genetic algorithm in codebook index assignment for

different population sizes are shown in Fig. 6.2. The average distortion decreases with increase

in the population size. This result is reasonable because for more individuals, the parallel genetic

algorithm will provide more possible solutions. All previous algorithms (Marca & Jayant, 1987;

Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho, 1987) are

simulated on the assumption of single bit error. One of the contributions in this chapter is the

derivation of the average distortion for any bit error and the application of the parallel genetic

algorithm to codebook index assignment for any bit error. Experimental results for the bit error

probability from 0.01 to 0.3 for 32 codewords are depicted in Fig. 6.3.

The spirit of the parallel genetic algorithm is not only to accelerate the speed of running

time, but also to produce improved index assignments. In order to reach these objectives, the

145

communication between groups should be operated for some fixed generations. By sending some

top best individuals in the current group to the neighbouring groups, the problem of being trapped

in the local optimum due to convergence in an earlier generation can be avoided because some

promising individuals are migrated from the other groups to replace some worse individuals in

the current group. Experiments have also been carried out to test performance in the separation

of the groups. The number of possible solutions that the parallel genetic algorithm provides

is P
 G
 Ng, where P, G and Ng are the group population size, the number of groups and

the number of generations, respectively. The comparisons in the performance of the separating

groups are based on the same total number of possible solutions, i.e., P
G
Ng is kept constant.

The total number of individuals of the population are separated into 8 groups, 4 groups, 2 groups

and 1 group (standard genetic algorithm) and the group population sizes are 50, 100, 200 and

400, respectively. The other parameter values used for the predefined number of generations

Ng, the bit error probability, the survival rate Ps, the crossover rate Pc, the mutation rate Pm,

the number of individuals for selection M, the number of top best for communicationB and the

number of generations for communicationR are 500, 0.01, 0.5, 0.4, 0.1, 3, 1 and 50 respectively.

The experimental results for 32 codewords are shown in Fig. 6.4, the more groups are used, the

better result is generated.

From the performance noted in these experiments, the proposed algorithm is an effective means

for assigning codevector indices for noisy channels. The property of multiple global optima can

also be employed to reduce the search space for codevector index assignment of the memoryless

binary symmetric channel. Furthermore, the average distortion of random assignment for any

bit error is also introduced in this chapter.

146

Number of codevectors New algorithm Random assignment Worst case
8 0.05019 0.08091 0.11805
16 0.05518 0.10667 0.17194
32 0.05735 0.12900 0.21675
64 0.06370 0.15695 0.26712

Table 6.4: Performance (MSE) comparison of new algorithm, random assignment and worst
case (bit error rate: 0.01)

Number of codevectors New algorithm Random assignment Worst case
8 0.49695 0.73824 1.00987
16 0.54219 0.93094 1.35419
32 0.56014 1.07788 1.57570
64 0.60435 1.25663 1.80073

Table 6.5: Performance (MSE) comparison of new algorithm, random assignment and worst
case (bit error rate: 0.1)

random 0.08091
Seed Parallel Genetic Algorithm Worst Case

1 0.50194 0.118052
2 0.50194 0.118052
3 0.50194 0.118052
4 0.50194 0.118052
5 0.50194 0.118052
6 0.50194 0.118052
7 0.50194 0.118052
8 0.50194 0.118052
9 0.50194 0.118052
10 0.50194 0.118052

Table 6.6: Mean squared errors for ten runs of the new algorithm and the worst case for 8
codewords (error bit rate: 0.01)

147

random 0.10667
Seed Parallel Genetic Algorithm Worst Case

1 0.055510 0.171944
2 0.054983 0.171944
3 0.054983 0.171944
4 0.055472 0.171944
5 0.054983 0.171944
6 0.054983 0.171944
7 0.055472 0.171944
8 0.055472 0.171944
9 0.054983 0.171944
10 0.054983 0.171944

Table 6.7: Mean squared errors for ten runs of the new algorithm and the worst case for 16
codewords (error bit rate: 0.01)

random 0.12900
Seed Parallel Genetic Algorithm Worst Case

1 0.057117 0.216169
2 0.057323 0.216480
3 0.057218 0.216682
4 0.057010 0.216950
5 0.057371 0.217128
6 0.057040 0.216832
7 0.057020 0.217046
8 0.058332 0.217064
9 0.057118 0.216629
10 0.057901 0.216559

Table 6.8: Mean squared errors for ten runs of the new algorithm and the worst case for 32
codewords (error bit rate: 0.01)

148

random 0.15695
Seed Parallel Genetic Algorithm Worst Case

1 0.063189 0.267354
2 0.064277 0.266953
3 0.064599 0.267502
4 0.063936 0.267080
5 0.064027 0.266898
6 0.063622 0.267707
7 0.063165 0.267259
8 0.063798 0.265945
9 0.063265 0.267465
10 0.063097 0.266987

Table 6.9: Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.01)

random 0.73824
Seed Parallel Genetic Algorithm Worst Case

1 0.496949 1.009870
2 0.496949 1.009870
3 0.496949 1.009870
4 0.496949 1.009870
5 0.496949 1.009870
6 0.496949 1.009870
7 0.496949 1.009870
8 0.496949 1.009870
9 0.496949 1.009870
10 0.496949 1.009870

Table 6.10: Mean squared errors for ten runs of the new algorithm and the worst case for 8
codewords (error bit rate: 0.1)

149

random 0.93094
Seed Parallel Genetic Algorithm Worst Case

1 0.540761 1.354326
2 0.544333 1.354326
3 0.540761 1.354326
4 0.540761 1.354326
5 0.540761 1.354326
6 0.544333 1.354326
7 0.544333 1.354326
8 0.544333 1.352996
9 0.540761 1.354326
10 0.540761 1.354326

Table 6.11: Mean squared errors for ten runs of the new algorithm and the worst case for 16
codewords (error bit rate: 0.1)

random 1.07788
Seed Parallel Genetic Algorithm Worst Case

1 0.561347 1.572520
2 0.558456 1.575521
3 0.559565 1.577115
4 0.562493 1.575976
5 0.558365 1.573213
6 0.564351 1.574178
7 0.560843 1.576259
8 0.557643 1.578823
9 0.561906 1.578223
10 0.556460 1.575162

Table 6.12: Mean squared errors for ten runs of the new algorithm and the worst case for 32
codewords (error bit rate: 0.1)

150

random 1.25663
Seed Parallel Genetic Algorithm Worst Case

1 0.602386 1.799010
2 0.601041 1.798727
3 0.606692 1.797925
4 0.606469 1.804297
5 0.600100 1.801423
6 0.604978 1.802993
7 0.603606 1.802993
8 0.606954 1.801774
9 0.604795 1.798162
10 0.606492 1.799980

Table 6.13: Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.1)

151

10 20 30 40 50

0.594

0.592

0.590

0.588

0.586

0.584

0.582

0.580

0.578

0.576

0.574

Average Distortion

Population Size of Each Group

8 Groups

500 Generations

0.01 Bit Error Probability

32 Codevectors

Survival Rate : 0.5

Crossover Rate : 0.4

Mutation Rate : 0.1

Number of Individuals for Selection : 3

Number of Top Best for Communication : 1

Number of Generations for Communication : 50

Figure 6.2: Average distortion of parallel genetic algorithm in codebook index assignment for
different population size

152

Parallel Genetic Algorithm

Ensemble Average Distortion

Worst Case

0 0.1 0.2 0.3

0

0.5

1.0

1.5

2.0

2.5

Bit Error Probability

Average Distortion

Figure 6.3: Average distortion of parallel genetic algorithm in codebook index assignment for
different bit error probability

153

1 2 3 4 5 6 7 8

0.05735

0.05740

0.05745

0.05750

0.05755

0.05760

0.05765

0.05770

0.05775

0.05780

0.05785

0.05790

0.05895

Average Distortion of 10 Runs

Number of Groups

Bit Error Rate : 0.01

Number of Generations : 500

Survival Rate : 0.5

Crossover Rate : 0.4

Mutation Rate : 0.1

Number of Individuals for Selection : 3

Number of Top Best for Communication : 1

Number of Generations for Communication : 50

Figure 6.4: Average distortion of parallel genetic algorithm in codebook index assignment for
different number of groups

154

Chapter 7

Summary and Conclusions

7.1 Summary

This thesis can be separated into four topics concerning fast VQ codeword search algorithms,

efficient VQ clustering algorithms, improved codebook design algorithms and improved algo-

rithms in VQ codebook index assignment for noisy channels.

In Chapter 3, several fast codeword search algorithms are proposed, such as improved al-

gorithms combining the minimax method and the improved absolute error inequality (IAEI)

criterion; improved algorithms for partial distortion search; improved algorithms for extended

partial distortion search; fast approximate search algorithm; and an improved algorithm for the

mean-distance-ordered search algorithm (MPS) for VQ image coding.

Several fast clustering algorithms for vector quantization are presented in Chapter 4. All these

approaches based on the LBG algorithm are compared. From the experiments, the IPC-type

clustering algorithm is confirmed to be the most suitable algorithm for the general processors in

which the operation of the multiplication is more expensive than the operation of comparison

and the TPC-type clustering algorithm is recommended for use with DSP chips in which the

operation of comparison is computationally expensive.

In Chapter 5, genetic algorithms are applied to the generation of codevectors. The approach

of stochastic relaxation is also combined with the genetic algorithms and the GLA algorithm to

155

further enhance the search ability of the genetic algorithm in codebook design.

Chapter 6 describes the importance of codebook index assignment for noisy channels and the

problem that codebook index assignment is an NP-hard problem. In order to derive improved

assignment in the codebook index, a parallel genetic algorithm is demonstrated. Furthermore,

the ensemble average distortion with any bit error is derived and the property of multiple global

optimal in codebook index assignment is highlighted.

7.2 Conclusions

7.2.1 Efficient Codeword Search Algorithms

Vector quantization has been applied to data compression of speech and images, the coding of

speech and images, speech recognition and speech synthesis. The response time of codeword

search for vector quantization is a very important factor to be considered for real-time applica-

tions. However, the complexity of vector quantization increases exponentially with the bit rate

per dimension and the number of dimensions. This limits the application of vector quantization.

In order to reduce the computation time, several efficient algorithms for VQ codeword search

have been demonstrated.

The bound for Minkowski metric is derived in this thesis. By setting the parameters, this bound

can generate the hypercube approach, the partial distortion search (PDS) algorithm, the absolute

error inequality criterion (AEI) and the improved absolute error inequality criterion (IAEI) etc.

For the Minkowski metric of order n, this bound contributes the elimination criterion from L �

metric toLn metric. The bound for Minkowski metric is also extended to the bounds for quadratic

metric by using the methods of Karhunen-Loêve transform (KLT) and Triangular Matrix. The

bounds for quadratic metric can be applied to the HMM with Gaussian mixture probability

density function.

By combining the improved absolute error inequality criterion with the minimax method, sev-

eral new algorithms are presented. Among these algorithms, the best algorithm will reduce the

156

number of multiplications by more than 77% and slightly reduce the total number of mathemat-

ical operations for 1024 codewords compared with the minimax method. Since the operation

of multiplication is far more expensive than the operation of addition or comparison for the

general processors, experimental results confirm this new criterion. From many experiments

in the literature (Huang et al., 1992; Soleymani & Morgera, 1987b; Soleymani & Morgera,

1989), the absolute error inequality criterion (AEI) is the most efficient criterion in reducing

the number of multiplications for a full search algorithm. By comparing the improved absolute

error inequality criterion (IAEI) with the absolute error inequality criterion (AEI) from theory,

the IAEI criterion provides a tighter bound than AEI criterion. From experiments in subsection

3.2.3, the IAEI criterion is shown to reduce the number of multiplications by more than 21%

and better than 3% for the total number of mathematical operations compared with the AEI

criterion.

The distortion computation of the quadratic metric dominates the computation time in searching

the nearest codeword for evaluating the log likelihood of Gaussian mixture distribution in the

hidden Markov model with the Gaussian mixture VQ codebook probability density function.

The quadratic metric is also popular in clustering algorithms. Unfortunately, the computational

complexity is high. That is why the bound for quadratic metric is developed in this thesis. The

experiments in the codeword search of the quadratic metric reveal that the new algorithm using

the bound for quadratic metric with the partial distortion search is very efficient. The idea of

this algorithm is to apply the technique of metric transformation from the quadratic metric to

the Euclidean metric. Each input data vector can be transformed from the quadratic metric to

the Euclidean metric first, then apply the bound for quadratic metric with the partial distortion

search to eliminate impossible codeword matching. As shown in section 3.7, in comparing

the new algorithm with the conventional method, the new algorithm will reduce the number of

multiplications and the total number of mathematical operations by more than 98 % and 94 %,

respectively.

157

There are two key elements in the design of efficient codeword search algorithms, i.e., an

efficient tentative match approach and a powerful elimination criterion. The tentative match

approach is used to derive the nearest codeword as soon as possible and the powerful elimination

criterion is used to eliminate impossible codeword matching to avoid the full computation of the

distortion between the codeword and the data vector. One of the most efficient tentative match

approaches in image coding is to use the codeword with the most similar sum of components to

the data vector as the most possible candidate. In applying this tentative match approach to the

mean-distance-ordered search algorithm (MPS) (Ra & Kim, 1993), a powerful algorithm was

reported by Ra and Kim. By extending the IAEI criterion, an even more powerful criterion is

obtained. This criterion is the generalised form of the inequality in the mean-distance-ordered

search algorithm (MPS). A new and improved algorithm is obtained by modifying the sum

of components to a partial sum of components as the tentative match approach and applying

the generalised criterion. This algorithm is an improved version of the mean-distance-ordered

search algorithm (MPS) and this novel algorithm can be called the improved mean-distance-

ordered search algorithm (IMPS). From experiments, without applying partial distortion search

algorithm in the IMPS algorithm and the MPS algorithm, the IMPS algorithm will reduce the

computation time by more than 43% compared with theMPS algorithm. By applying the partial

distortion search algorithm both in the IMPS algorithm and the MPS algorithm, the IMPS

algorithm will reduce the number of multiplications by more than 27% and also reduce the total

number of mathematical operations about 15% for 1024 codewords.

Normally, the partial distortion search algorithm (PDS) is used at the last stage of the efficient

codeword search algorithms because no algorithm can eliminate all impossible codeword match-

ing and the rest of the codewords which cannot be eliminated using some powerful criteria, can

be further eliminated using the partial distortion search algorithm. The partial distortion search

algorithm is very suitable for general processors in which the operation of multiplication is more

expensive than the operation of comparison. In order to enhance the performance of the PDS

algorithm to be suitable for any processor, the cost ratio of the comparison computation time

158

to dimension-distortion computation time is considered, and an improved PDS algorithm and

an improved DPPDS algorithm are proposed. If the computation time of the comparison is

neglected compared with that of multiplication, the cost ratio will be nearly 0, then the compu-

tation time of the improved DPPDS algorithm will be the same as the PDS algorithm. If the

cost ratio is 1.0, then the improvedDPPDS algorithm will reduce the computation time by more

than 27% in comparison with the PDS algorithm.

As described in section 3.4, the extended partial distortion search (EPDS) algorithm is the

optimal version of PDS algorithm for considering the number of multiplications needed. The

EPDS algorithm is very suitable for computer architectures in which the complexity of com-

parisons is negligible with respect to that of the multiplications. EPDS algorithm is less suited

to some DSP processors in which comparisons are computationally expensive. In order to

evaluate and enhance the performance of EPDS algorithm, the cost ratio of the sorting time

to dimension-distortion computation time is introduced and the improved EPDS algorithm is

proposed. Especially, the optimal inserting point of the sorting and the performance of EPDS

and improved EPDS are derived in theory. The improved EPDS algorithm can be applied to

dimension-distortion computation for codeword search and the frame-distortion computation for

word recognition.

A fast algorithm for approximate codeword search is also presented. Based on the average dis-

tortion needed, a rate can be selected. For example, the number of multiplications and the total

number of operations will be reduced by more than 80 % and 11 % with only 0.6 % increased

distortion for 8 codewords if the selected rate is 1.1 by comparing with the minimax method.

7.2.2 Fast VQ Generation Algorithms

In the efficient algorithms of codebook generation, several fast clustering approaches based

on LBG algorithm are proposed and compared. Among these approaches, using the previous

partitioned centre as the tentative match with improved AEI and PDS which is called the IPC-

type clustering algorithm is the most suitable approach for computer architectures in which the

159

complexity of comparisons is negligible with respect to that of multiplications. For processor

architectures such as those based on the Harvard architecture in which comparisons are com-

putationally expensive, the combination of the previous partitioned centre, triangular inequality

elimination (TIE) and PDS which is called a TPC-type clustering algorithm outperforms the

other algorithms.

7.2.3 Improved VQ Codebook Design Algorithms

The performance of vector quantization depends on the quality of the codevectors and the exis-

tence of a globally optimal algorithm to generate the codevectors. Up to now, no efficient method

has been discovered to generate globally optimal codevectors. Although several algorithms were

proposed (Ball & Hall, 1967; Linde et al., 1980; Equitz, 1989; Cetin & Weerackody, 1988;

Zeger et al., 1992; Chung et al., 1993; Chen et al., 1995) for the design of the codebook, none of

these has proven to be globally optimal. In this thesis, genetic algorithms are combined with the

GLA algorithm to produce a more optimal algorithm when compared with the GLA algorithm.

The approach of stochastic relaxation is also inserted to the mutation of genetic algorithms to

further improve this novel algorithm. The main idea of these algorithms is to apply the powerful

search ability of genetic algorithms to adapt the value of codevectors. For 32 or 64 codewords,

the novel algorithms reduce the mean square error by more than 9% comparing with the GLA

algorithm.

7.2.4 New Discoveries of Codebook Index Assignment

Vector quantization is very efficient for data compression of speech and images where the binary

indices of the optimally chosen codevectors are sent. Vector quantization as the central data

reduction scheme is however highly sensitive to channel errors. The effect of channel errors

is to cause errors in the received indices. A parallel genetic algorithm is applied to assign the

codevector indices for noisy channels so as to minimize the distortion due to bit errors. A parallel

genetic algorithm is a genetic algorithm running on many small subpopulations simultaneously

with an occasional identification and exchange of useful information among subpopulations.

160

The purpose of applying the parallel genetic algorithm in VQ codebook index assignment is not

only to use the powerful technique of parallel processors to accelerate the search speed but also

a distributed formulation is developed to generate better solutions with less work. Experimental

results show that applying a parallel genetic algorithm to the optimization ofVQcodebook index

assignment will reduce the distortions by more than 59% compared with the random assignment

and better than 75% compared with the worst case for 64 codevectors and 0.01 bit error rate.

The novel property of multiple global optima has been reported. Using the property of multiple

global optima, the complexity of computation can be reduced. All the algorithms (Marca &

Jayant, 1987; Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho,

1987) are simulated based on the assumption of single bit error, a condition which is not always

true for real applications. The average distortion of the memoryless binary symmetric channel

for any bit error in the assignment of codebook indices is also introduced in this thesis.

7.3 Future Work

7.3.1 Quadratic Metric

The bound for quadratic metric not only can be used in HMM-based recognition, but it can

also be applied to any codeword search in which the distortion measure is quadratic. In speech

recognition systems based on the semi-continuous hidden Markov model, the output probabilities

are evaluated as

bi(x) =
NX
j=�

cijΦ(x�
ij�Σij)�

where Φ(x�
ij�Σij) are often Gaussians and cij are the mixture coefficients.

In the most practical implementations, the above summation is extended only to the L most

likely Gaussians in the mixture. Thus, the bounds for the quadratic metric can be modified to

the search of the L best likely Gaussians in the mixture for a given input data vector X.

The bounds for the quadratic metric are derived from the bound for the Minkowski metric using

161

methods of metric transformation. This work can thus be extended to investigate other methods

of metric transformation and to extend the bound for Minkowski metric to other distortion

measures in addition to the quadratic metric.

7.3.2 Vector Quantization of Images

The generalised form of the inequality in the mean-distance-ordered search algorithm (MPS)

has been presented. In the proposed new algorithm, each codevector is separated into two

sub-vectors only. By using this generalised form, each codevector can be separated into more

than two sub-vectors and each sub-vector can be the composition of any components in the

codevector. It may be also possible to find the optimal separation of these vector components

in theory so that it is the most efficient in the codeword search. In addition, if the sums of

the components for the subvectors are calculated first and these values are sorted in increasing

order including the indices of codevectors, then the proposed new algorithm can be modified as

follows:

Step 1: FCode sumi =
Pk��

j=� c
j
i, SCode sumi =

Pk

j= k
�

+� c
j
i andTCode sumi = FCode sumi+

SCode sumi are calculated for each codeword, i = �� �� ����N,N is the number of code-

words. A sorting list is computed according to the increasing order of the TCode sum i.

Step 2: FData sum =
Pk��

j=� x
j, SData sum =

Pk

j= k
�

+� x
j andTData sum = FData sum+

SData sum are calculated.

Step 3: Calculate the tentative matching codeword i usingargMinijTData sum�TCode sumij.

Step 4: Calculate the squared Euclidean distortion Dmin for the tentative matching codeword.

Set l to be the nearest uncalculated codeword to the tentative matching codeword in the

sorting list.

Step 5: Check the termination of this program. Test Eq. 3.71 for the neighbour codewords in a

back-and-forth manner as in paper (Ra & Kim, 1993), if it is satisfied, delete impossible

162

codeword matching, set l to be the nearest uncalculated codeword to the tentative matching

codeword in the sorting list and goto step 5; Otherwise, goto next step.

Step 6: Test jFData sum� FCode sumlj �
q

k
�
Dmin or jSData sum� SCode sumlj �

q
k

�
Dmin for the neighbour codewords in a back-and-forth manner as in paper (Ra &

Kim, 1993), if it is satisfied, then eliminate impossible codeword matching; otherwise use

the IAEI with PDS to the codeword search and update the Dmin. Set l to be the nearest

uncalculated codeword to the tentative matching codeword in the sorting list and goto step

5.

7.3.3 Inequality for Codeword Search

Given codewords Ci = fcji; � � j � kg, � � i � N, training data vectors Yp = fyjp; � � j � kg,

� � p � T and test data vector X = fxj; � � j � kg, from the training data vectors and

codewords, compute

A(i) = maxp
maxjjcji � yjpjPk

j=�(c
j
i � yjp)�

+ �� (���)

and

B(i) = minp

maxjjcji � yjpjPk

j=�(c
j
i � y

j
p)�

� ��� (���)

where �� and �� are small scalar values and � � i � N. For a test vector X, use the minimax

method as tentative match and compute

n = argminimaxjjcji � xjj� (���)

If

maxjjcjl � xjj � A(l)
B(n)

maxjjcjn � xjj� (���)

then
kX
j=�

(cjl � xj)� �
kX
j=�

(cjn � xj)�� (���)

163

Eq. 7.4 and 7.5 can be proved as follows:

Assuming that the training data set is sufficiently representative of the test dta so that the ratio

maxjjcjl � xjj�Pk

j=�(c
j
l � xj)� falls within the range of values maxjjcji � yjpj�

Pk

j=�(c
j
i � yjp)�

observed for the training vectors for each i. From Eq. 7.1 and Eq. 7.2, with the above assumption,

the following two equations are obtained.

A(l) � maxjjcjl � xjjPk

j=�(c
j
l � xj)�

(���)

and

B(n) � maxjjcjn � xjjPk

j=�(c
j
n � xj)�

� (���)

Given

maxjjcjl � xjj � A(l)
B(n)

maxjjcjn � xjj =
A(l)
B(n)

maxjjcjn � xjj� (���)

by substituting Eq. 7.7 into Eq. 7.8, Eq. 7.9 is obtained.

maxjjcjl � xjj � A(l)
kX
j=�

(cjn � xj)�� (���)

Eq. 7.6 can be rewritten as

A(l)
kX
j=�

(cjl � xj)� � maxjjcjl � xjj� (����)

According to Eq. 7.9 and Eq. 7.10, Eq. 7.5 is obtained and the proof is completed. Eq. 7.4 and

7.5 might be useful in the codeword search. This inequality could combine with the other fast

codeword search algorithms. Note that Eq. 7.1 and Eq. 7.2 can be changed to Eq. 7.11 and

Eq. 7.12 or some other mathematical forms without having influence on the existence of this

inequality, in other words, this inequality can be extended to other distortion measures.

A(i) = maxp
maxjjcji � yjpjqPk

j=�(c
j
i � yjp)�

+ ��� (����)

164

B(i) = minp

maxjjcji � yjpjqPk

j=�(c
j
i � y

j
p)�

� ��� (����)

7.3.4 Codebook Design

In the GA-GLA1 algorithm and the GA-GLA2 algorithm, the initial individuals of the population

are obtained from a random number generator. If the K-means algorithm is used to generate the

initial population, the result might be superior. In the codebook design, the average distortion

will be high if the centres of two clusters are very near or too many training data vectors in

the same cluster, i.e., the average distortion within one cluster is over some threshold. If two

clusters’ centres are very near, it is better to merge these two clusters together. If there are too

many training data vectors in the same cluster, it is better to split this cluster into two clusters.

These properties could be combined with the GA-GLA1 algorithm and GA-GLA2 algorithm, the

stochastic relaxation approach and the simulated annealing method to create further improved

codebook design methods.

165

References

Abut, H., Gray, R. M., & Rebolledo, G. (1982). Vector Quantization of Speech and Speech-Like
Waveforms. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-30,
423–435.

Ahmed, M. E., & Al-Suwaiyel, M. I. (1993). Fast Methods for Code Search in CELP. IEEE
Transactions on Speech and Audio Processing, 1(3), 315–325.

Anderberg, M. R. (1973). Cluster Analysis for Applications. Academic Press.

Atal, B. S., & Schroeder, M. (1985). Code Excited Linear Prediction (CELP): High quality
Speech at very Low Rates. IEEE International Conference on Acoustics Speech and Signal
Processing, April, 937–940.

Ball, G. H., & Hall, D. J. (1967). A Clustering Technique for Summarizing Multivariate Data.
Behavior Science, 12, 153–155.

Balss, U., H. Reininger, H. Schalk, & Wolf, D. (1995). Robust Vector Quantization for Low Bit
Rate Speech Coding. 4th European Conference on Speech Communication and Technology,
September, 1057–1060.

Bei, C., & Gray, R. M. (1985). An Improvement of the Minimum Distortion Encoding Algorithm
for Vector Quantization. IEEE Transactions on Communications, COM-33(10), 1132–
1133.

Bentley, J. L. (1975). Multidimensional Binary Search Trees Used for Associative Searching.
Communication ACM, 18(9), 509–517.

Bezdek, J. C. (1973). Fuzzy Mathematics in Pattern Classification. PhD Thesis, Department of
Apply Mathematics, Cornell University.

Bohachevsky, Ihor O., Johnson, Mark E., & Stein, Myron L. (1986). Generalized Simulated
Annealing for Function Optimization. Technometrics, 28(3), 209–217.

Bottemiller, Robert L. (1992). Comments on ‘A New Vector Quantization Clustering Algorithm’.
IEEE Transactions on Signal Processing, 40(2), 455–456.

Brindle, A. (1981). Genetic Algorithms for Function Optimization. PhD Thesis, University of
Alberta, Edmonton, Canada.

Budge, S. E., & Baker, R. L. (1985). Compression of Color Digital Images Using Vector
Quantization in Product Codes. IEEE International Conference on Acoustics Speech and
Signal Processing, April, 129–132.

Buzo, A., Gray, A. H., Gray, R. M., & Markel, J. D. (1980). Speech Coding Based Upon
Vector Quantization. IEEE Transactions on Acoustics, Speech, and Signal Processing,
ASSP-28(5), 563–574.

166

Cetin, A. Enis, & Weerackody, Vijitha. (1988). Design Vector Quantizers Using Simulated
Annealing. IEEE Transactions on Circuits and Systems, 35(12), 1550–1550.

Chen, C. Q., Koh, S. N., & Sivaprakasapillai, P. (1995). Codebook Generation for Vector
Quantization. Electronics Letters, 31(7), 522–523.

Chen, J. H., & Gersho, A. (1987). Gain-Adaptive Vector Quantization with Application to
Speech Coding. IEEE Transactions on Communications, COM-35, 918–930.

Chen, S. H., & Pan, J. S. (1989). Fast Search Algorithm for VQ-Based Recognition of Isolated
Word. IEE Proceedings-I, 136(6), 391–396.

Cheng, D., & Gersho, A. (1986). A Fast Codebook Search Algorithm for Nearest-Neighbor Pat-
tern Matching. IEEE International Conference on Acoustics Speech and Signal Processing,
265–268.

Cheng, D., Gersho, A., Ramamurthi, B., & Shoham, Y. (1984). Fast Search Algorithms for
Vector Quantization and Pattern Matching. IEEE International Conference on Acoustics
Speech and Signal Processing, 9.11.1–9.11.4.

Chung, F. L., Lee, T., & Chan, W. (1993). Path-following Approach to Globally Optimal Vector
Quantizer Design. Electronics Letters, 29(21), 1831–1832.

Cohoon, J. P., Hegde, S. U., Martine, W. N., & Richards, D. (1987). Punctuated Equilibria:
A Parallel Genetic Algorithm. Proceedings of the Second International Conference on
Genetic Algorithms, July, 148–154.

Conway, John H., & Sloane, J. A. (1983). A Fast Encoding Method for Lattice Codes and
Quantizers. IEEE Transactions on Information Theory, IT-29(6), 820–824.

Cuperman, Vladimir, Gersho, Allen, Pettigrew, Robert, Shynk, John J., & Yao, Jey-Hsin. (1991).
Backward Adaptive Configurations for Low-Delay Vector Excitation Coding. Advances in
Speech Coding, Kluwer Academic Publishers, 13–23.

Davidson, G., Yong, M., & Gersho, A. (1987). Real-Time Vector Excitation Coding of Speech
at 4800 BPS. IEEE International Conference on Acoustics Speech and Signal Processing,
April, 2189–2192.

Davis, Lawrence. (1991). Handbook of Genetic Algorithms. Published by Van Nostrand
Reinhold.

Deller, J. R., Proakis, Jr. J. G., & Hansen, J. H. L. (1993). Discrete-Time Processing of Speech
Signals. Macmillan Publishing Company.

Delport, V., & Koschorreck, M. (1995). Genetic Algorithm for Codebook Design in Vector
Quantization. Electronics Letters, 31(2), 84–85.

Devijver, P. A., & Kittler, J. (1982). Pattern Recognition: A Statistical Approach. Published by
Prentice-Hall Inc.

Dunn, J. C. (1974). A Fuzzy Relative of the ISODATA Process and Its Use in Detecting Compact
Well-Separated Clusters. Journal of Cybernetics, 3(3), 32–57.

Elliott, Douglas F. (1982). Fast Transforms: Algorithms, Analyses, Applications. Academic
Press.

Equitz, William. (1987). Fast Algorithms for Vector Quantization Picture Coding. IEEE Inter-
national Conference on Acoustics Speech and Signal Processing, 725–728.

167

Equitz, William H. (1989). A New Vector Quantization Clustering Algorithm. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 37(10), 1568–1575.

Fang, Hsiao-Lan. (1994). Genetic Algorithms in Timetabling and Scheduling. Ph.D. Thesis,
Department of Artificial Intelligence, University of Edinburgh.

Farrell, K., Mammone, R., & Assaleh, K. T. (1994). Speaker Recognition Using Neural Networks
and Conventional Classifiers. IEEE Transactions on Speech and Audio Processing, 2(1),
194–205.

Farvardin, Nariman. (1990). A Study of Vector Quantization for Noisy Channels. IEEE Trans-
actions on Information Theory, 36(4), 799–809.

Fischer, F. P., & Patrick, E. A. (1970). A Preprocessing Algorithm for Nearest Neighbour
Decision Rules. Proc. Nat. Electronics Conf., 481–485.

Fissore, L., Laface, P., Massafra, P., & Revera, F. (1993). Analysis and Improvement of the
Partial Distance Search Algorithm. IEEE International Conference on Acoustics Speech
and Signal Processing, 315–318.

Flanagan, J. K., Morrell, D. R., Frost, R. L., Read, C. J., & Nelson, B. E. (1989). Vector Quanti-
zation Codebook Generation Using Simulated Annealing. IEEE International Conference
on Acoustics Speech and Signal Processing, 1759–1762.

Forsyth, Mark E. (1995). Semi-Continuous Hidden Markov Models for Automatic Speaker
Verification. PhD Thesis, Department of Electrical Engineering, University of Edinburgh.

Friedman, J. H., Bentley, J. L., & Finkel, R. A. (1977). An Algorithm for finding Best Matches in
Logarithmic Expected Time. ACM Transactions on Mathematical Software, 3(3), 209–226.

Fukunaga, K., & Narendra, P. M. (1975). A Branch and Bround Algorithm for Computing
k-Nearest Neighbours. IEEE Transactions on Computers, C-24(July), 750–753.

Gamal, Abbas A. EL, Hemachandra, Lane A., Shperling, Itzhak, & Wei, Victor K. (1987). Using
Simulated Annealing to Design Good Codes. IEEE Transactions on Information Theory,
IT-33(1), 116–123.

Gersho, A., & Cuperman, V. (1983). Vector quantization: A Pattern Matching Technique for
Speech Coding. IEEE Communication Magazine, December, 15–21.

Gersho, A., & Ramamurthi, B. (1982). Image Coding Using Vector Quantization. IEEE
International Conference on Acoustics Speech and Signal Processing, April, 428–431.

Gersho, Allen, & Gray, Robert M. (1992). Vector Quantization and Signal Compression. Kluwer
Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning.
Addison Wesley Publishing Company.

Goldberg, D. E. (1990). A Note on Boltzmann Tournament Selection for Genetic Algorithms
and Population Oriented Simulated Annealing. Complex System, 4, 445–460.

Goldberg, M., & Sun, H. F. (1986). Image Sequence Coding Using Vector Quantization. IEEE
Transactions on Communications, COM-34(July), 703–710.

Gray, R. M. (1984). Vector Quantization. IEEE ASSP Magazine, April, 4–29.

Guan, L., & Kamel, M. (1992). Equal-Average Hyperplane Partitioning Method for Vector
Quantization of Image Data. Pattern Recognition Letters, 13(10), 693–699.

168

Habibi, A. (1974). Hybrid Coding of Pictorial Data. IEEE Transactions on Communications,
COM-22(May), 614–624.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of Michigan
Press.

Huang, C. M., Bi, Q., Stiles, G. S., & Harris, R. W. (1992). Fast Full Search Equivalent Encoding
Algorithms for Image Compression Using Vector Quantization. IEEE Transactions on
Image Processing, 1(3), 413–416.

Huang, S. H., & Chen, S. H. (1990). Fast Encoding Algorithm for VQ-Based Image Coding.
Electronics Letters, 26(19), 1618–1619.

Huang, X. D. (1992). Phoneme Classification Using Semicontinuous Hidden Markov Models.
IEEE Transactions on Signal Processing, 40(5), 1062–1067.

Huang, X. D., Ariki, Y., & Jack, M. A. (1990). Hidden Markov Models for Speech Recognition.
Edinburgh University Press.

Itakura, F., & Saito, S. (1970). A statistical method for estimation of speech spectral density and
formant frequencies. Electronics and Communications in Japan, 53A, 36–43.

Jeong, Dae G., & Gibson, Jerry D. (1989). Lattice Vector Quantization for Image Coding. IEEE
International Conference on Acoustics Speech and Signal Processing, 1743–1746.

Jiang, Q., & Zhang, W. (1993). An Improved Method for Finding Nearest Neighbours. Pattern
Recognition Letters, 14(7), 531–535.

Juang, B. H., & Gray, A. H. (1982). Multiple Stage Vector Quantization for Speech Coding. IEEE
International Conference on Acoustics Speech and Signal Processing, April, 597–600.

Kamgar-Parsi, B., & Kanal, L. N. (1985). An Improved Branch and Bound Algorithm for
Computing k-Nearest Neighbours. Pattern Recognition Letters, 3, 7–12.

Kang, G. S., & Coulter, D. C. (1976). 600 Bps Voice Digitizer. IEEE International Conference
on Acoustics Speech and Signal Processing, April, 91–94.

Kirkpatrick, S., C. D. Gelatt, Jr., & Vecchi, M. P. (1983). Optimization by Simulated Annealing.
Science, 220(4598), 671–680.

Kitawaki, Nobuhiko. (1991). Quality Assessment of Coded Speech. Advances in Speech Signal
Processing, Marcel Dekker Inc., 357–385.

Koh, J. S., & Kim, J. K. (1988). Fast Sliding Search Algorithm for Vector Quantization in Image
Coding. Electronics Letters, 24(17), 1082–1083.

Kubrick, A., & Ellis, T. (1990). Classified Vector Quantization of Images: Codebook Design
Algorithm. IEE Proceedings-I, 137(6), 379–386.

Kumazawa, H., Kasahara, M., & Namekawa, T. (1984). A Construction of Vector Quantizers
for Noisy Channels. Electronics and Engineering in Japan, 67-B(4), 39–47.

Lee, C. H., & Chen, L. H. (1994). Fast Closest Codeword Search Algorithm for Vector
Quantization. IEE proceedings on Vision Image and Signal Processing, 141(3), 143–148.

Leibson, S. H. (1993). EDN-Microprocessor Directory. EDN, November, 148–148.

Linde, Y., Buzo, A., & Gray, R. M. (1980). An Algorithm for Vector Quantizer Design. IEEE
Transactions on Communications, COM-28(1), 84–95.

169

Lippmann, Richard P. (1987). An Introduction to Computing with Neural Nets. IEEE ASSP
Magazine, April, 4–22.

Lloyd, S. P. (1982). Least Squares Quantization in PCM. IEEE Transactions on Information
Theory, IT-28(2), 129–137.

Lo, K. T., & Cham, W. K. (1993). Subcodebook Searching Algorithm for Efficient VQ Encoding
of Images. IEE Proceedings-I, 140(5), 327–330.

Lowry, A., Hossain, S., & Millar, W. (1987). Binary Search Trees for Vector Quantization. IEEE
International Conference on Acoustics Speech and Signal Processing, 2205–2208.

Lu, N. A., & Morrell, D. R. (1991). VQ Codebook Design Using Improved Simulated Annealing
Algorithms. IEEE International Conference on Acoustics Speech and Signal Processing,
673–676.

MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Ob-
servations. Proceeding of the Fifth Berkeley Symposium on Mathematics, Statistics and
Probability, 1, 281–296.

Marca, J. R. B. De, & Jayant, N. S. (1987). An Algorithm for Assigning Binary Indices to
the Codevectors of a Multi-Dimensional Quantizer. IEEE International Conference on
Communications, June, 1128–1132.

Mathews, V. John. (1992). MultiplicationFree Vector Quantization Using L1 Distortion Measure
and Its Variants. IEEE Transactions on Image Processing, 1(1), 11–17.

McInnes, F., & Jack, M. (1988). Automatic Speech Recognition Using Word Reference Patterns.
Aspects of Speech Technology, University of Edinburgh Press, 1–68.

Moayeri, N., Neuhoff, D. L., & Stark, W. E. (1991). Fine-Coarse Vector Quantization. IEEE
Transactions on Signal Processing, 39, 1503–1515.

Mohammadi, H. R. Sadeh, & Holmes, W. H. (1994). Fine-Coarse Split Vector Quantization:
An Efficient Method for Spectral Coding. Australian International Conference on Speech
Science and Technology, 118–123.

Nasrabadi, N. M. (1985). Use of Vector Quantizers in Image Coding. IEEE International
Conference on Acoustics Speech and Signal Processing, March, 125–128.

Nasrabadi, N. M., & King, R. A. (1983). Image Coding Using Vector Quantization in the
Transform Domain. Pattern Recognition Letters, 323–329.

Nasrabadi, N. M., & King, R. A. (1984). A New Image Coding Technique Using Transform
Vector Quantization. IEEE International Conference on Acoustics Speech and Signal
Processing, March.

Nasrabadi, Nasser M., & King, Robert A. (1988). Image Coding Using Vector Quantization: A
Review. IEEE Transactions on Communications, 36(8), 957–971.

Ngwa-Ndifor, J., & Ellis, T. (1991). Predictive Partial Search Algorithm for Vector Quantization.
Electronics Letters, 27(19), 1722–1723.

Niemann, H., & Goppert, R. (1988). An Efficient Branch-and-Bound Nearest Neighbour Clas-
sifier. Pattern Recognition Letters, 7(2), 67–72.

Nitta, Tsuneo. (1994). Speech Recognition Applications in Japan. International Conference on
Spoken Language Processing, 671–674.

170

Nyeck, A., Mokhtari, H., & Tosser-Roussey, A. (1992). An Improved Fast Adaptive Search
Algorithm for Vector Quantization by Progressive Codebook Arrangement. Pattern Recog-
nition, 25(8), 799–801.

O’Shaughnessy, Douglas. (1987). Speech Communication: Human and Machine. Addison-
Wesley Publishing Company.

Paliwal, K. K., & Ramasubramanian, V. (1989). Effect of Ordering the Codebook on the
Efficiency of Partial Distance Search Algorithm for Vector Quantization. IEEE Transactions
on Communications, 37(5), 538–540.

Pan, J. S. (1988). Fast Speaker Independent Isolated Word Recognition System. M.S. Thesis,
Department of Communication Engineering, Chiao Tung University, Taiwan.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1994a). Comparison of Fast VQ Training Algorithms.
Proceedings of The Fifth Australian International Conference on Speech Science and
Technology, 1(December), 106–111.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1994b). Improvements in Extended Partial Distortion
Search and Partial Distortion Search Algorithms VQ Search. Proceedings of The Fifth
Australian International Conference on Speech Science and Technology, 1(December),
100–105.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1995a). Bound for Minkowski Metric Based on Lp Dis-
tortion Measure. Proceedings of The 4th European Conference on Speech Communication
and Technology, 1(September), 753–756.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1995b). Improved Absolute Error Inequality Criterion
for Vector Quantization. Proceedings of The First Symposium of the Chinese Institute of
Engineers in UK, 46–46.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1995c). VQ Codebook Design Using Genetic
Algorithms. Electronics Letters, 31(17), 1418–1419.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1996a). Application of Parallel Genetic Algorithm
and Property of Multiple Global Optima to VQ Codevector Index Assignment. Electronics
Letters, 32(4), 296–297.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1996b). Bound for Minkowski Metric or Quadratic
Metric Applied to Codeword Search. IEE proceedings on Vision Image and Signal Pro-
cessing.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1996c). Fast Clustering Algorithms for Vector
Quantization. Pattern Recognition, 29(3), 511–518.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1996d). A Genetic Algorithm for VQ Codebook
Generation. Proceedings of The Second International Conference on Adaptive Computing
in Engineering Design and Control, March, 319–321.

Pan, J. S., McInnes, F. R., & Jack, M. A. (1996e). Reply: VQ Codebook Design Using Genetic
Algorithms. Electronics Letters, 32(3), 194–194.

Pettey, C. B., Leuze, M. R., & Grefenstette, J. J. (1987). A Parallel Genetic Algorithm.
Proceedings of the Second International Conference on Genetic Algorithms, July, 155–
161.

Press, W. H., Flannery, B. P., Teukolsky, S. A., & Vetterling, W. T. (1986). Numerical Recipes:
the Art of Scientific Computing. Cambridge University Press.

171

Ra, S. W., & Kim, J. K. (1991). Fast Weight-Ordered Search Algorithm for Image Vector
Quantization. Electronics Letters, 27(22), 2081–2083.

Ra, S. W., & Kim, J. K. (1993). A Fast Mean-distance-Ordered Partial Codebook Search
Algorithm for Image Vector Quantization. IEEE Transactions on Circuits and Systems-II,
40(9), 576–579.

Rabiner, L. R., & Juang, B. H. (1986). An Introduction to Hidden Markov Models. IEEE ASSP
Magazine, January, 4–16.

Rabiner, L. R., Rosenberg, A. E., & Levinson, S. E. (1978). Considerations in Dynamic Time
Warping Algorithms for Discrete Word Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-26, 575–582.

Rabiner, Lawrence, & Juang, Biing-Hwang. (1993). Fundamentals of Speech Recognition.
Published by PTR Prentice-Hall Inc.

Ramamurthi, Bhaskar, & Gersho, Allen. (1986). Classified Vector Quantization of Images. IEEE
Transactions on Communications, COM-34(11), 1105–1115.

Ramasubramanian, B., & Paliwal, K. K. (1990). An Efficient Approximation-Elimination
Algorithm for Fast Nearest-Neighbour Search Based on a Spherical Distance Coordinate
Formulation. European Signal Processing Conference, September, 875–878.

Richter, Stephen L., & DeCarlo, Raymond A. (1983). Continuation Method: Theory and
Applications. IEEE Transactions on Circuits and Systems, CAS-30(6), 347–352.

Sabin, M. J., & Gray, R. M. (1984). Product Code Vector Quantizers for Waveform and Voice
Coding. IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-32, 474–
488.

Saito, T., Takeo, H., Aizawa, K., Harashima, H., & Miyakawa, H. (1986). Adaptive Discrete Co-
sine Transform Image Coding Using Gain/Shape Vector Quantization. IEEE International
Conference on Acoustics Speech and Signal Processing, April, 129–132.

Salari, E., & Li, W. (1994). Adaptive Fast Encoding Algorithm for Vector Quantization.
Electronics Letters, 30(21), 1733–1734.

Shonkwiler, R. (1993). Parallel Genetic Algorithms. Proceedings of the Fifth International
Conference on Genetic Algorithms, 199–205.

Soleymani, M. R., & Morgera, S. D. (1987a). An Efficient Nearest Neighbor Search Method.
IEEE Transactions on Communications, COM-35(6), 677–679.

Soleymani, M. R., & Morgera, S. D. (1987b). A High-Speed Algorithm for Vector Quantization.
IEEE International Conference on Acoustics Speech and Signal Processing, 1946–1948.

Soleymani, M. R., & Morgera, S. D. (1989). A Fast MMSE Encoding Technique for Vector
Quantization. IEEE Transactions on Communications, 37(6), 656–659.

Stonick, Virginia L., & Alexander, S. T. (1992). Globally Optimal Rational Approximation
Using Homotopy Continuation Methods. IEEE Transactions on Signal Processing, 40(9),
2358–2361.

Sun, H. F., & Goldberg, M. (1985). Adaptive Vector Quantization for Image Sequence Coding.
IEEE International Conference on Acoustics Speech and Signal Processing, March, 339–
342.

172

Syswerda, G. (1989). Uniform Crossover in Genetic Algorithms. Proceedings of the Third
International Conference on Genetic Algorithms, 2–9.

Tohkura, Yohichi. (1987). A weighted Cepstral Distance Measure for Speech Recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing, ASSP-35(10), 1414–1422.

Vaisey, Jacques, & Gersho, Allen. (1988). Simulated Annealing and Codebook Design. IEEE
International Conference on Acoustics Speech and Signal Processing, 1176–1179.

Vecchi, Mario P., & Kirkpatrick, Scott. (1983). Global Wiring by Simulated Annealing. IEEE
Transactions on Computer-Aided Design, CAD-2(4), 215–222.

Vidal, E. (1986). An Algorithm for Finding Nearest Neighbours in (Approximately) Constant
Average Time. Pattern Recognition Letters, 4(3), 145–157.

Ward, J. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of American
Statistics Association, 58(March), 236–244.

Wilpon, Jay G., & Roe, David. (1994). Applications of Speech Recognition Technology in
Telecommunications. International Conference on Spoken Language Processing, 667–
670.

Wong, D. Y., Juang, B. H., & Gray, A. H. (1982). An 800 B/S Vector Quantization LPC Vocoder.
IEEE Transactions on Acoustics, Speech, and Signal Processing, ASSP-30(5), 770–780.

Wu, Jianxiong, & Chan, Chorkin. (1993). Isolated Word Recognition by Neural Network Models
with Cross-Correlation Coefficients for Speech Dynamics. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(11), 1174–1184.

Zeger, K. A., & Gersho, A. (1987). Zero Redundancy Channel Coding in Vector Quantization.
Electronics Letters, 23(12), 654–656.

Zeger, K. A., & Gersho, A. (1989). Stochastic Relaxation Algorithm for Improved Vector
Quantizer Design. Electronics Letters, 25(14), 896–898.

Zeger, Kenneth, & Gersho, Allen. (1990). Pseudo-Gray Coding. IEEE Transactions on Com-
munications, 38(12), 2147–2158.

Zeger, Kenneth, Vaisey, Jacques, & Gersho, Allen. (1992). Globally Optimal Vector Quantizer
Design by Stochastic Relaxation. IEEE Transactions on Signal Processing, 40(2), 310–322.

173

Appendix A

Publications by the author

Journal Papers

1. y J. S. Pan, F. R. McInnes and M. A. Jack, “VQ Codebook Design Using Genetic Algo-
rithms”, IEE Electronics Letters, Vol. 31, No. 17, 1418–1419, 1995

2. J. S. Pan, F. R. McInnes and M. A. Jack, “Fast VQ Codeword Search and Genetic Algo-
rithms for VQ Codebook Design”, Postgraduate Journal of The Department of Electrical
Engineering, University of Edinburgh, Issue 2, 33–37, January, 1996

3. y J. S. Pan, F. R. McInnes and M. A. Jack, Reply: “VQ Codebook Design Using Genetic
Algorithms”, IEE Electronics Letters, Vol. 32, No. 3, 194–194, 1996

4. y J. S. Pan, F. R. McInnes and M. A. Jack, “Application of Parallel Genetic Algorithm
and Property of Multiple Global Optima to VQ Codevector Index Assignment”, IEE
Electronics Letters, Vol. 32, No. 4, 296–297, 1996

5. y J. S. Pan, F. R. McInnes and M. A. Jack, “Fast Clustering Algorithms for Vector
Quantization”, Pattern Recognition, Vol. 29, No. 3, ISSN 0031-3203, 511–518, March,
1996

6. y J. S. Pan, F. R. McInnes and M. A. Jack, “Bound for Minkowski metric or quadratic metric
applied to codeword search”, IEE-Proceedings on Vision Image and Signal Processing,
Vol. 143, No. 1, 67–71, February, 1996

Conference Papers

1. J. S. Pan, F. R. McInnes and M. A. Jack, “Improvements in extended partial distortion
search and partial distortion search algorithms VQ search”, Proceedings of The Fifth
Australian International Conference on Speech Science and Technology (SST-94), 100–
105, 1994

2. J. S. Pan, F. R. McInnes and M. A. Jack, “Comparison of fast VQ training algorithms”,
Proceedings of The Fifth Australian International Conference on Speech Science and
Technology (SST-94), 106–111, 1994

174

3. J. S. Pan, F. R. McInnes and M. A. Jack, “Improved absolute error inequality criterion
for vector quantization”, Proceedings of The First Symposium of The Chinese Institute of
Engineers in UK, 46–46, 1995

4. J. S. Pan, F. R. McInnes and M. A. Jack, “Bound for Minkowski metric based on Lp distor-
tion measure”, Proceedings of The 4th European Conference on Speech Communication
and Technology, 753–756, 1995

5. J. S. Pan, F. R. McInnes and M. A. Jack, “A genetic algorithm for VQ codebook gener-
ation”, Proceedings of The Second International Conference on Adaptive Computing in
Engineering Design and Control’96, 319–321, March, 1996

6. J. S. Pan, F. R. McInnes and M. A. Jack, “VQ codevector index assignment using genetic
algorithms for noisy channels”, Proceedings of The Fourth International Conference on
Spoken Language Processing, 1996

y Reprinted in this appendix

175

