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Abstract

Thisthesisinvestigates efficient codeword search algorithmsand efficient clustering algorithms
for vector quantization (VQ), improved codebook design algorithms and improved codebook
index assignment for noisy channels.

In the investigation of codeword search algorithms, several fast approaches are proposed, such
as the improved absolute error inequality criterion, improved agorithms for partia distortion
search, improved algorithmsfor extended partial distortion search and a fast approximate search
algorithm. The bound for the Minkowski metric is derived asthe generalised form of the partial
distortion search algorithm, hypercube approach, absoluteerror inequality criterionandimproved
absolute error inequality criterion. This bound provides a better criterion than the absolute
error inequality elimination rule on the Euclidean distortion measure. For the Minkowski
metric of order n, this bound contributes the elimination criterion from the L; metric to the L,,
metric. Thisbound is aso extended to the bound for the quadratic metric by using methods of
metric transformation. The improved absolute error inequality criterion is also extended to the
generalised form of the mean-distance-ordered search algorithm for VQ image coding.

Severa fast clustering agorithms for vector quantization based on the LBG agorithm are
presented. Genetic algorithms are applied to codebook design to derive improved codevectors.
The approach of stochastic relaxation isalso applied to the mutation step of the genetic algorithm
to further improve the codebook design algorithm.

Vector quantizationisvery efficient for datacompression of speech and imageswhere the binary
indices of the optimally chosen codevectors are used. The effect of channel errorsisto cause
errors in the received indices. A parallel genetic algorithm is applied to assign the codevector
indicesfor noisy channels so asto minimizethe distortiondueto bit errors. Thenovel property of

multiple global optimaand the average distortion of the memoryless binary symmetric channel

for any bit error in the assignment of codebook index are also introduced.
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Chapter 1

| ntroduction

1.1 Importance of vector quantization

Communication by the socially rich medium of speech is one of the most important capabilities
possessed by human beings. The speech waveform conveys linguistic information, speaker’s
tone, speaker’s emotion and speaker’s state of health. Since the invention of the telephone by
Alexander Graham Bell, human beings have been ableto exchange information viathe telephone
without being face to face, communicating in real-time with one another in any place by using
mobile phones or any suitable communication tool. One of the major recent advances in such
remote speech communication is the development of speech coding techniques. In the area of
speech coding, vector quantization (VQ) (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al.,
1980) has been shown to be a popular and essential speech coding technique. Furthermore, vec-
tor quantization also plays an important role in image coding (Gersho & Gray, 1992; Kubrick
& Ellis, 1990; Ramamurthi & Gersho, 1986; Nasrabadi & King, 1988).

Human-machine (computer) communication by speech providesa convenient way to communi-
cate with machines. It reduces the amount of typing a human needs to undertake leaving hands
free and alowing access away from the terminal or screen. In addition the ears can be used as
well asthe eyes. The machine needs to both recognize speech and respond with the resultsusing
speech by employing speech recognition techniques and speech synthesistechniques. Although
the performance of current speech recognition systems remains imperfect, implementations of
efficient and accurate speech recognizers are in widespread use in many applications (Wilpon
& Roe, 1994; Nitta, 1994). The automatic speech entry of data or commands in manufacture
is popular and related applications include speech-based product inspection, inventory control



and material handling. Speech recognition isalso applied to automatic transcription and aids for
the hearing impaired or physically disabled. The importance of vector quantization in speech
recognition is reported in many papers (Rabiner & Juang, 1993; Deller et al., 1993). The
hidden Markov model (HMM) (Huang et al., 1990; Rabiner & Juang, 1986; Huang, 1992) has
been shown to be a promising method in speech recognition which relies on the preprocessing
stage of vector quantization for discrete or semi-continuous HM M -based recognition. In speech

synthesis, vector quantization is also useful for pattern matching to reduce data storage.

Automatic speaker recognition (Forsyth, 1995) involves identifying people from their voices
completely automatically. Speaker recognition can be separated into two categories: speaker
verification and speaker identification. Both categories use similar techniquesto speech recogni-
tion, such asdynamic timewarping (DTW) (Mclnnes& Jack, 1988; Rabiner et al., 1978) vector
quantization, hidden Markov models and neural networks (NN) (Lippmann, 1987; Wu & Chan,
1993; Farrell et al., 1994). Vector quantization can be seen as the preprocess of DTW, HMM
and NIN. Vector quantizationisalso akey element in speaker recognition. Vector quantizationis
therefore a most fundamental and important technique in speech coding, image coding, speech

recognition, speech synthesis and speaker recognition.

Vector quantization has been widely used in various applicationsas described above. An ordered
set of signal samples or parameters can be efficiently coded by matching the input vector to a
similar pattern or codevector (codeword) in a predefined codebook. For any given input data
vector, the encoder assigns one index to the data vector in which the index is the address of the
best matching codevector. In the data compression of speech coding or image coding, the index
is transmitted and the decoder replicates the corresponding codevector by a table lookup from
a copy of the same codebook. The response time of encoding is a very important factor to be
considered for real-timetransmission (Cheng et al., 1984; Cheng & Gersho, 1986; Ramasubra-
manian & Paliwal, 1990; Vidal, 1986; Soleymani & Morgera, 1987b; Ra & Kim, 1993). Inthis
thesis, improvementsin the partial distortion search (PDS) algorithm and the extended partial

distortion search (EPDS) agorithm are presented. These improve the performance of the partial

distortion search method (Bei & Gray, 1985). The bounds for the Minkowski metric and the
guadratic metric are derived and applied to codeword search problemsto improve the efficiency

for the Minkowski distortion measure and the Mahalanobis distortion measure. An improved



fast mean-distance-ordered partial codebook search algorithm for image vector quantization is

also reported together with several efficient approaches for training VQ codebooks.

In the application of vector quantization to waveform coding or recognition, the performance
depends on the existence of a good codebook of representative vectors. A novel VQ codebook
design algorithm using genetic algorithms (GA) (Goldberg, 1989; Davis, 1991) is proposed.
This approach provides superior performance compared with the generalized Lloyd algorithm
(GLA) (Lindeet al., 1980).

A very important problem in quantization theory is how to effectively overcome the performance
degradation caused by noisy channels. One possible approach is to use redundant parity bits
for error control coding. In thisthesis, a parallel genetic algorithm (PGA) (Cohoon et al.,
1987; Pettey et al., 1987; Shonkwiler, 1993) isapplied to assign the codevector indicesfor noisy

channels so as to minimize the distortion due to bit errors without adding any redundant bit.

1.2 Thesisstructure

There are five main chapters in this thesis. Chapter 2 introduces the mathematics and theory
essentia for the reader. It includes areview of probability and stochastic processes, distortion
measures, the Lagrange multiplier technique, theory of vector quantization, hidden Markov
models, genetic algorithms and parallel processing. In Chapter 2 a new approach to deriving
bounds for the Minkowski metric based on the Lagrange multiplier technique is highlighted.
The bound for the Minkowski metric is shown to be a general form of the hypercube approach,
the partial distortion search (PDS) agorithm, the absolute error inequality criterion (AEI) and
the improved absolute error inequality criterion (IAEI). The improved absolute error inequality
criterion isanew criterion presented in thisthesis, being derived from this bound. It is shownto
provide a better criterion than the absolute error inequality criterion on the Euclidean distortion
measure. For the Minkowski metric of order n, thisbound contributes the elimination criterion
from the L; metric to the L, metric. The bound for the Minkowski metric is also extended
to the bounds for the quadratic metric by using the methods of the Triangular Matrix and the
Karhunen-Loéve transform (KLT). The bounds for the quadratic metric can be applied to any

codeword search in which the distortion measure is quadratic. One of the main contributions



in this thesis is the derivation of the bound for the Minkowski metric and the bounds for the

quadratic metric.

Chapter 3 reviews the history of many fast codeword search algorithms and introduces key ele-
ments of codeword search algorithms. A range of new and efficient codeword search algorithms
are presented in this chapter. The processors can be separated into two classes, i.e., general
processors and DSP processors. For general processors, such as Intel 80486, Intel Pentium and
Motorola680x0, the operation of multiplicationis more expensivethan the operation of addition

and comparison. For DSP processors, such as the TM S320 series of processors, the operation
of comparison is computationally expensive. The novel partial distortion search algorithm is
shown to be very suitable for use with general processors and isless suited to DSP processors.

By considering the cost ratio of the comparison computation time to dimension-distortion com-

putationtime, an improved PDS algorithm and a new and improved DPPDS algorithm are also
proposed here to enhance the performance of the partia distortion search algorithm which isin
fact suitable for any processor. The extended partial distortion search (EPDS) agorithmis a
modified version of the partial distortion search (PDS) agorithm and is an optimal PDS in the
sense of reducing the number of multiplications. The EPDS algorithm ishowever, only suitable
for general processors. Animproved EPDS algorithm based on available computer architecture
isderivedinthischapter. By considering the cost ratio of the sorting time to dimension-distortion

computation time of agiven processor, the optimal inserting point of the sorting can be predicted

from the derived equations. Thisimproves the performance of the EPDS algorithm.

The improved absolute error inequality criterion (IAEI) is a specia case of the bound for the
Minkowski metric. It is the most efficient criterion for reducing the number of multiplications
for the full search agorithm based on a Euclidean distortion measure. An efficient algorithm is
proposed in Chapter 3, combining the TAEI criterion with the minimax method. Comparison
of this new and efficient algorithm with the minimax method, demonstrates a reduction in the
number of multiplicationsby more than 77% and with a slight reduction in the total number of
mathematical operations for 1024 codewords. Since the absolute error inegquality has already
been shown to be the most efficient criterion in reducing the number of multiplications (Huang
et al., 1992; Soleymani & Morgera, 1987b; Soleymani & Morgera, 1989), experiments are
also reported in Chapter 3 to demonstrate that the IAEI criterion can reduce the number of



multiplications by more than 21% and better than 3% for the total number of mathematical
operations compared with the AEI criterion. Also, Chapter 3 shows that (in theory) the IAEI
provides a tighter bound than the AEI criterion. A new fast algorithm for approximate search
is also presented in this chapter and the IAEI criterion is also extended to the generalised form
of the mean-distance-ordered partial codebook search (MPS) algorithm (Ra & Kim, 1993) for
image coding. Theimproved mean-distance-ordered partial codebook search (IMPS) algorithm
is developed by employing this generalised formula. The drawback of the MPS algorithm is
addressed and the IMLPS agorithm is shown to overcome this drawback. In codeword search
experiments, without applying the PDS algorithm both in the IMPS agorithm and the MPS
algorithm, the IMPS algorithm is shown to reduce the computation time by more than 43%
compared with the MLPS agorithm for 1024 codewords. The IMPS algorithm is also shown to
reduce the number of multiplications by more than 27% and reduce the total number of math-
ematical operations about 15% for 1024 codewords for applying the partial distortion search
algorithm both in the IMPS algorithm and the MPS algorithm.

Several fast clustering algorithms for vector quantization are introduced in Chapter 4 and two
tentative match approaches (previous vector candidate and previous partitioned centre) are used
inthe experiments. Thetriangular inequality elimination (TIE) and the codebook reorder method
are introduced in this chapter. Many combinations of the improved absolute error inequality
criterion, absolute error inequality criterion, hypercube approach, partial distortion search, tri-
angular inequality elimination criteria and codebook reorder method to produce fast clustering
algorithmsare presented here. Among these approaches, the most efficient algorithm for general
processors is the IPC-type clustering algorithm which is a combination of the previous parti-
tioned centre, the IAEI criterion and the PDS algorithm. For DSP processors, the TPC-type
clustering algorithm which is the combination of a previous partitioned centre, triangular in-

equality elimination (TIE) and PDS algorithm, outperforms the other algorithms.

Chapter 5 reviews several codebook design algorithms. The K-means agorithm, ISODATA
clustering algorithm, GLA, pairwise nearest neighbour algorithm, fuzzy C-means clustering
algorithm, deviation reduction algorithm, codebook design by stochastic relaxation, codebook
generation using simulated annealing method and vector quantizer design using path-following

are discussed in this chapter. Finally, a novel codebook design approach based on genetic al-



gorithmsis proposed. This algorithmisthe combination of genetic algorithmsand GLA which
is called GA-GLA algorithm. An improved version of GA-GLA is also presented by inserting
the stochastic relaxation method in the mutation step. Experimental results demonstrate that the
GA-GLA dgorithmsare significantly better than the GLA agorithm.

Chapter 6 introduces the importance of codevector index assignment for noisy channels. The
property of multiple global optima and the average distortion of the memoryless binary sym-
metric channel for any bit error are demonstrated. The ensemble average distortion for any bit
error in the memoryless binary symmetric channel is derived for the first timein thisthesisand
the property of multiple global optimais aso reported here for the first time. The property of
multiple global optimacan be used to reduce the search space for codebook index assignmentin
noisy channels. A new (good) codevector index assignment based on parallel genetic algorithm
is presented. It is further shown that applying the parallel genetic algorithm in the codebook
index assignment, not only speeds up the computation time but also generates better results.
The proposed use of genetic algorithms for codebook index assignment for noisy channels is

suggested in thisthesisfor the first time.

The fina chapter summarizes the important discoveries and conclusions of thisthesis. Severa

possible methods for future work are also addressed in this chapter.



Chapter 2

Mathematics and Theory

2.1 Review of Probability and Stochastics Processes

211 Theory of Probability

Probability isa set function P that assignsto each event E in the sample space Q anumber P(E),
called a probability of event E, such that the following properties are satisfied:

1. Probabilitiesare non-negative, P(E) > 0.
2. The probability of the entire space Q is1, P(Q2) = 1.

3. Theprobability of the union of the mutually exclusiveeventst;,1=1,2,..., Misthesum
of the prababilitiesof theindividual events,i.e, P(E;UE,U...Eyn) = P(E;) +P(E) +... +

P(Em), where mutually exclusivemeans E; N E; = ¢ for any i 7 5.

A probability measure P can also be defined in terms of areal valued function f defined on R

with the following properties:

1. f(x) > 0,xeR.

2. [T f(x)dx=1.

3. P(F) = [, f(x)dx, Fisan event.

Thefunctionf iscalled aprobability density function (pdf). Some of the more commonly

used pdf’son R are listed below.



1. Gaussian pdf:

1 =)?
e 1 2.1

f(x) =
¢) 2mo?

where pisthe mean of x and o isthe standard deviation.

2. Uniform pdf:

o a<x<b
f(x) = (2.2)
0, otherwise
where b > a.
3. Exponential pdf:
] X
o) = e, (2.3)
where A > 0.
4. Laplacian (doubly exponential) pdf:
1 _VIIx|
f(x) = \/ﬁe o, 2.4

where o isthe standard deviation of x.

If the sample space Q isa discrete set of real numbers, then afunction p can be defined for all

pointsin Q which has the following properties:

1. p(x) >0, xeQ.

2. > =1

xeQ

3. PA= D p).

xeFNQ

Thefunctionp iscaled aprobability mass function (pmf). Some of the more commonly

used pmf’sare listed below.



1. Binary pmf:

p(1) = C[,D(O) =1- qu = {0»1}

2. Uniform pmf:

p(x) = %,xe§2= {0,1,...,n—1}.

3. Geometric pmf:

p(x)=(0 - q)q*,xeQ={0,1,...}.

where g isarea number in[0,1].

4. Poisson pmf:
Xp—A

A
p(x) = :' xeQ=1{0,1,...).

where A isa positive real number.

(2.5)

(2.6)

(2.7)

(2.8)

Given a probability function P or the probability density function f, the cumulative

distribution function (cdf) F(r) is defined by

F(r) =P(x|x <), for discrete sample space

or
F(r) =J f(x)dx, for continuous sample space.
Thisimpliesthat
dF(r)
f(r) = .
™) dr

2.9)

(2.10)

2.11)



2.1.2 Random Variable and Random Process

A (real) random variable X is a mapping from the sample space into the real number line: X :
Q — R,i.e, X assignsarea number to every point in the sample space. If arandom variable X
isdiscrete and its allowablevalues are x, x5, ..., X,,, then the probability of the discrete random
variable taking the value x; is denoted asp(X = x;). The sum of the probability over al values

of the random variableis

ip(Xin)ZL 2.12)
i=1

If X is a continuous random variable, then the prabability of the continuous random variable
taking the value x is denoted as fx(x). The integral of the probability over all values of the

random variableis

Joo fx(x)dx =1. (2.13)

A random vector isavector whose componentsinclude multiplerandom variables, i.e., arandom
vector isafinite collection of random variables. A random vector is said to be independent and
identically distributed (iid) if it has independent components with identical marginals, i.e., the
corresponding probability functions are identical. A random process is an indexed family of
random variables {X; teT}. Theindex t corresponds to time. If T is continuous, then the
processis called a continuous time random process. If T isdiscrete, then the processiscalled a
discrete time random process or a random sequence. A discrete time random process is said to
be independent and identically distributed (iid) if the random variables produced by the process

are independent and have identical distributions.

2.2 Metricsand Distortion M easures

A key component of pattern matching is the measurement of dissimilarity between two feature

vectors. Assume X, Y and Z are three vectors in a multidimensional space. Without loss of
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generdity, k-dimensional real Cartesian space denoted R* is used as the collection of all
k-dimensional vectors with real elements. On R¥, a metric D is a real-valued function which

fulfils the following three metric properties:

1. Positive definiteness property

0<D(X,Y)<o for X,YeR¥ (2.14)

and D(X,Y)=0 iff X=Y. (2.15)
2. Symmetry property

D(X,Y)=D(Y,X) for X,YeR" (2.16)

3. Triangular inequality property

D(X,Y) < D(X,Z) +D(Y,Z) for X,Y,ZeRx 2.17)

If the measurement of dissimilarity satisfies only the positive definiteness property, it is called
the distortion measure, such as the Itakura distortion measure and the likelihood distortion
measure (or the Itakura-Saito distortion family) (Rabiner & Juang, 1993). Each metric hasits
own advantages and drawbacks. Three main characteristics (Devijver & Kittler, 1982) of the
metric are computational complexity, analytical tractability and feature evaluation reliability.
The choice of a particular metric depends on the actual application.

2.2.1 Minkowski Metric

Most of the metrics used in speech and image processing are special cases of the Minkowski
metric. Let x' denote the ith component of the k-dimensional vector X. The Minkowski metric

of order p (Deller et al., 1993), or the L, metric, between vectors X and Y can be expressed as

11



k
D,(X, V)= P\ | Y X —yilp, (2.18)
i=1

where X = {x",x?,...,x*} and Y = {y",y?, ..., y*}.
Three special cases are as follows:

1. L or city block metric

k
Di(X,Y)=> X' -y (2.19)
i=1

DL(X,Y)= | ) X -y~ (2.20)
i=1

3. L., or Manhattan (Chebyshev) metric

2. L, or Euclidean metric

D..(X,Y)=max|x" — y'|. (2.27)

In the codeword search problem, usually the Euclidean metric isused because it fits the physical
meaning of distance (or distortion). In order to avoid calculating the division, the squared
Euclidean metric is employed instead of the Euclidean metric in pattern matching. This does
not affect the result by deleting the square root from the Euclidean metric. Several researchers
(Soleymani & Morgera, 1989; Lo & Cham, 1993; Mathews, 1992) also call the squared Euclidean
metric as smply the Euclidean metric. For convenience and without causing confusion, the

Euclidean metric is also used without the square root in thisthesis.
2.2.2 Signal to Noise Ratio Measure

The signal to noiseratio (SNR) (Kitawaki, 1991) measure is appropriate for speech waveform

coding. It isone of the common objective measures defined as

12



SNR = 10logy, (2.22)

RAEES

Here, x) isan undistortedinput speech signal, %’ isthedistorted output speech signal of waveform
coding and m is the number of samplesin the speech signal. This measure is also suitable for
image coding. Generally, the SNR measure characterizes the ratio of long-term average speech
power to long-term average quantizing noise power. Thelarger-power speech section dominates
the long-term calculation of SNR measure. Hence, a smaller-power speech section is neglected,
in spite of its importance, such as for consonant or transient periods. This measure can be
improved by separating the speech waveform into several frames, taking the same measure over
each frame and summing the measurement for all frames. It is named segmental SNR (SNR )

which is defined as

1 N
SNRueq = 17 > SNR;, (2.23)
i=1

where N is the number of frames and SNR; isthe SNR of the ith frame. The typical duration

of the frame is 20 ms for speech segments.

2.2.3 Spectral Distortion Measure

The spectral distortion measure (SD) is an objective measure containing the characteristics of

the whole speech spectrum and is defined as

D=3 J:{sx(w — 5,(b)}db]', (2.24)

where S, and S, are input and output speech spectra, respectively, and b is the frequency band
of the signal. The speech spectrum can be computed from the fast Fourier transform (FFT).

2.24 Cepstral Distortion Measure

The cepstrum (Rabiner & Juang, 1993) of asignal isdefined as the Fourier transform of the log
of the signal spectrum. Given two cepstrum coefficients C, and C, in the k-dimensional vector

space, the cepstral distortion between C, and C, isexpressed as
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k
De(C, C) =) _lei—cif” (2.25)
i=1

225 Quadratic Metric

The quadratic metric is an important generalization of the Euclidean metric. Let Q denote
the positive definite matrix, such as the inverse of the covariance matrix, the quadratic metric

between vectors X and Y is defined as follows:

Dy(X,Y) = (X - Y)'Q(X - Y). (2.26)

One particular case of the quadratic metricisthe weighted cepstral distortion measure (Tohkura,

1987). It isdefined as

k
Dw(Ce, C) = > wilcl = clf?, 2.27)
i=1

where w; isthe reciproca of the ith diagonal element of the covariance matrix of the feature
vectors. The most significant characteristic of the weighted cepstral distortionisthat it equalizes
the importance in each dimension of cepstrum coefficients. In the speech recognition, the
weighted cepstral distortion can be used to equalize the performance of the recognizer across

different talkers (Pan, 1988).

2.2.6 Itakura-Saito Distortion Measure

The Itakura-Saito distortion measure (O’ Shaughnessy, 1987; Rabiner & Juang, 1993; Itakura &
Saito, 1970) computes a distortion between two input vectors by using their spectral densities.

The definition of this measureis as follows:

Sy Sy
Dis(X»Y) = |S_ - LTL(S_) - 1|v (228)
y y

where S, and S, are the spectral densities of the vectors X and Y.
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2.3 LagrangeMultiplier Technique

The Lagrange multiplier technique is an efficient method for finding the minimum or
maximum values of afunction g(x, y, z) subject to aconstraint condition h(x,y, z) = 0. It

is expressed with the formation of the auxiliary function

f(,y,2,0) = 9(x,y,2) + Mb(x,y,2), (2.29)

subject to the conditions

of of of
5 =0 - 0, 5 =0, (2.30)
which are necessary conditionsfor arelative minimum or maximum value and the parameter A

isindependent of x, y, and z.

This technique can be generalized to find the minimum or maximum values of a function
g(x1, %, ..., xn) subjecttotheconstraint conditions b (xy, x2, ..., xn) = 0,¥2(x1, X2, ..., Xy) =

0, ..., Uiu(x1, %32, ..., xn) = 0. Theauxiliary functionis

f(XhXZ» ---)XTUA) =g +A]1-I)] + Azlbz +...F A‘rn-l-l)‘rn (231)

subject to the necessary conditions

of of of
5 =0 300 e 370 (2.32)

where A, 1=1,2,...,m,isindependent of x;,j =1,2,...,n.

2.4 Theory of Vector Quantization

A fundamental purpose of data compression, such as image coding or speech coding, is to
reduce the bit rate for transmission or data storage while maintaining the necessary fidelity of
the data. One of the simple and essential examples of data compression is the transmission of
speech by pulse code modulation (PCM) in which a sampler followed by scalar quantization

is used to compress the speech data. According to Shannon’s rate-distortion theory, improved
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performance is always achievablein theory by coding vectorsinstead of scalars, even if the data
source is memoryless. A vector can be used to represent almost any type of pattern, such as a
block of image data by forming the vector which is composed of the values of the pixelsin the
block; or a segment of speech waveform by forming the vector from the values of the sample
points in the segment. The vector may represent a number of different possible speech coding
parameters including linear predictive coding (LPC) coefficients, cepstrum coefficients, gain
parameters and prediction residual samples. It is aso possible to represent the parameters in
image coding, such as coefficientsof the discrete cosinetransform (DCT) or the Wal sh-Hadamard
transform. Vector quantization can be viewed as a generdization of scalar quantization to

the quantization of a vector, an ordered set of real numbers. Fig. 2.1 illustrates the basic

Encoder Decoder
Nearest
Input _ Table Output
— Neighbour ———= Index ——= e
Vector Search L ookup Vector
Codevectors Codevectors

Figure 2.1: Vector quantization diagram

idea of vector quantization (Gersho & Gray, 1992; Gray, 1984; Gersho & Cuperman, 1983;
Nasrabadi & King, 1988). The VQ encoder encodes a given set of k-dimensional data vectors
X={X;|X; € R¥;j =1, ..., T}withamuch smaller subset C={C;|C; € R5;i=1,.. ., N}(N < T).
The subset C is called a codebook and its elements C; are called codewords, codevectors,
reproducing vectors, prototypes or design samples. Only the index 1 is transmitted to the
decoder. The decoder has the same codebook as the encoder, and decoding is operated by
table look-up procedure. The performance of data compression depends on creation of a good

codebook of representative vectors.

16



24.1 Vector Quantizers

Codevectors

Cp, P=1,2,...,N

Index 1j =i
Xj E—— E—— |j =

i =argMinD(Xj , Cp)
p

Figure 2.2: Vector quantization encoder

AsshowninFig. 2.2, theindex I; of the jth data vector isi whichis transmitted to the receiver
if the codeword C; isthe nearest neighbour to the data vector X;. Thisclass of vector quantizers
caled Voronoi or nearest neighbour vector quantizer is particularly useful. The nearest
neighbour encoding algorithm is described as follows:

Stepl: Setdyin =00, p=1,1=1L

Step 2: Calculate d,, = D(X;, C,).

Step 3: If d;, < diin, Set dinin = dp, andi=p.

Step 4: If p <N, setp =p + 1landgotostep 2.

Step 5: Terminate the search program and record the search index i.

The initial value d.;,» = oo means that the initial d..;, is larger than any possible distortion
in the decoding approach. The LBG agorithm (Linde et al., 1980) is a popular VQ training
algorithm which was proposed by Linde, Buzo and Gray and their names are used to refer to
thisalgorithm. LBG based vector quantizer belongs to the class of nearest neighbour quantizer.

A lattice vector quantizer (Conway & Sloane, 1983; Jeong & Gibson, 1989; Gersho & Gray,

1992) isa different class of vector quantizers whose codebook is either a lattice or a coset of a
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lattice or atruncated version of alattice or itscoset so that the codebook sizeisfinite. Thelattice
based vector quantizer providesdesign simplicity, reduces encoding complexity and yields high

guantization performance especially for large codebook size.

The performance of the vector quantizer can be evaluated by a distortion measure D whichisa
non-negative cost D (X;, )2,-) associated with quantizing any input vector X; with a reproduction
vector )2,-. Usually, the Euclidean distortion measure is used. The performance of a quantizer
is aways qudified by an average distortion D, = E[D(X,-,)?,-)] between the input vectors and
the fina reproduction vectors, where E represents the expectation operator. Normally, the
performance of the quantizer will be good if the average distortion is small. If the data vector
processis stationary and ergodic, then the overall measure of performance can be expressed as
the long term sample average or time average

n—oo M

I 1 & .

D = lim —];D(X,-—X,-)% T];D(x,- - X)), (2.33)
where T isthe number of data vectors and it islarge enough to qualify the performance.
2.4.2 Speech Coding and Image Coding

The most simple and original application of vector quantization to speech coding is to perform
block waveform coding called vector pulse code modulation (VPCM) (Gersho & Cuperman,
1983; Abut et al., 1982) on the speech signal vector. Vector quantization has been applied
to the efficient coding of linear predictive coding (LPC) parameters (Kang & Coulter, 1976;
Buzo et al., 1980; Wong et al., 1982), parameters of pitch predictor, gain parameters (Chen &
Gersho, 1987; Sabin & Gray, 1984), the coding of the excitation or residual signal in analysis-
by-synthesis predictive coding techniques, such as vector excitation coding (VXC) (or code
excited linear prediction (CELP)) (Davidson et al., 1987; Atal & Schroeder, 1985; Ahmed &
Al-Suwaiyel, 1993; Cuperman et al., 1991).

The application of vector quantization on digital images has been investigated in the spatial
domain, such as the mean/shape VQ (Budge & Baker, 1985), the classified VQ (Gersho
& Ramamurthi, 1982; Ramamurthi & Gersho, 1986) codebook replenishment VQ (Sun &
Goldberg, 1985), hierarchical VQ (Nasrabadi, 1985) and the interframe VQ (Goldberg
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& Sun, 1986). The goa of transform coding for digital images is to convert statistically
dependent or correlated picture elements into independent or uncorrelated coefficients. In the
transform domain, vector quantization has been applied to the coding of adaptive transform
(Saito et al., 1986), one — dimensional transform (Nasrabadi & King, 1983), two —
dimensional transform (Habibi, 1974) and interframe transform (Nasrabadi & King,

1984).
24.3 Computational Complexity

In the VQ coding area, fidelity increases with the transmissionrate r (bitsper vector dimension).
For afixed transmissionrate r and vector dimension k, the size of aVVQ codebook N is2*". The
search complexity to find a nearest codeword for a given input data vector is O(k2*"), i.e., k2"
multiplications, (2k — 1)2*" additionsand 2" — 1 comparisonsfor exhaustive full search (EFS).
The search complexity increases exponentially asthe vector dimension grows. Thisisone mgjor
drawback of VQ codeword search and it limitsthe fidelity of coding for real time transmission.
In order to reduce the computational cost, two general approaches have been reported. The first
proposes fast search agorithms for searching the same codebook (Cheng et al., 1984; Cheng
& Gersho, 1986; Ra & Kim, 1991; Huang & Chen, 1990; Lo & Cham, 1993; Soleymani &

Morgera, 1987a). The other reported techniques use structured codebook (Juang & Gray, 1982;
Lowry et al., 1987; Moayeri et al., 1991; Mohammadi & Holmes, 1994) to achieve efficient

codeword search.

2.5 Hidden Markov Model

Signal modelling based on hidden Markov models (HMM) may be considered as a technique
that extends conventional stationary spectral analysis principles to the analysis of time-varying
signals. Hidden Markov model theory (Forsyth, 1995; Huang et al., 1990; Rabiner & Juang,
1986) has been applied successfully in speech and speaker recognition. The principle of the
hidden Markov model isto provide a probabilistic framework for VQ codewords for modelling
temporal and contextual information. It is a collection of states connected by transitionswhich
include a set of state transition probabilities and a set of output probability mass functions.

The state transition probability is the probability of a state transition occurring. The output
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probability mass function defines the conditional probability of each possible output symbol

from afinite alphabet given a state.

In the training phase, the forward — backward algorithm and Baum — Welch re-estimation
algorithmaregenerally used totrainthe setsof statetransition probabilitiesand output probability
density functions. In the recognition phase, the Viterbi dynamic programming algorithm can
be used to find the optimal assignment of frames to the states, based on maximising the total
probability. There arefour main categoriesin hidden Markov models: discrete hidden Markov
model (DHMM), continuous hidden Markov model (CHMM), semi—continuous hidden
Markov model (SCHMM) and Multi-VQ hidden Markov model (MVQ HMM). In DHMM,
VQ codewords are assigned probabilitiesand the probability of the codeword which isnearest to
the feature vector is used as the observation probability. These VQ codewords are shared for all
statesof al models. In CHMM, each state of each model hasdifferent mixture Gaussian VQ
functions. If thetraining dataisinadequate, it isdifficult to usethe parametersof the Gaussians
to estimate each state of each model. SCHMM overcomes this difficulty by having afixed set
of Gaussians in a codebook that are shared for al states of all models. MVQ HMM isan
approach to fill the gap between the SCHMM and CHMM by having different Gaussian

codebooks for different models.

2.6 Genetic Algorithms

Genetic agorithms (GA) (Fang, 1994) are a group of methods which solve problems using
approaches inspired by the processes of Darwinian evolution. The current genetic algorithms
in science and engineering refer to a model introduced and investigated by Holland (Holland,
1975) and by students of Holland. In genetic algorithms, a set of solutionsto aproblemiscalled
chromosomes. A chromosome (string of solution) iscomposed of genes (features, characters
or detectors). Usually, the individua of the whole population contains only one chromosome.
The performance of thesolutioniscalled fitness. Thefitnessof chromosomesare eval uated and
ordered, then new chromosomes are produced by using the selected candidates asparents and
applying mutation and crossover operations. The new set of chromosomesisthen evaluated

and ordered again. This cycle continues until a suitable solution is found. The conventional
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genetic algorithm is described as the following steps:

Step 1. Initialization: Encodeand assignachromosometo each individual inthe population.
Step 2. Evaluation: Decode and evaluate each chromosome's fithess.

Step 3. Selection: Select the survivors for the next generation from the better fitness of
chromosomes. These survivors will be the candidate for the crossover and mutation

operation.

Step 4. Crossover: Pairs of survivors are selected as the parents to crossover to produce new

chromosomes (children) for the next generation.
Step 5. Mutation: Mutation is operated among genes in chromosomes randomly.
Step 6. Steps2to 5 are repeated until adequate fitnessis found.

2.6.1 Initialization

A set of chromosomes is randomly generated. For example, if the problem is to minimize a
function of a, b, c and d, then the initial step may be to generate a collection of random vectors
(ai, by, ci,di), 1 =1,2,...,P, P isthe number of chromosomes or population size. The gene
in the chromosome can be binary or non-binary. The length of the chromosome (string) or
the number of genes in the chromosome can be fixed or variable. The representation of the

chromosome plays an important role in genetic algorithms.

2.6.2 Selection

Thegoal of selectionisto choosethe better individual sasthe survivorswhich are then used asthe
parents and undergo subsequent crossover and mutation operations. Without the selection step,
the crossover and mutation operations are useless, i.e., no better offspring could be generated in
the next generation. The probability of each parent being selected is the function of its fithess.
Even only keeping the best individual asthe survivor, with the other survivorsselected randomly,

and the parents selected from the survivors, the GA can perform well.
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Roulette Wheel Selection

Roulette Wheel selection (Goldberg, 1989) or fitness-based selection is the original approach
for parent selection. In Roulette Wheel selection, the probability of selection for each parent
is directly proportional to its fithess. The performance of this selection depends strongly on
the range of fitness values in the current population. For example, if the population size is 5
and the fitness values are 1, 10, 100, 500 and 1000, then the probability of selecting the first
individua is ﬁ There is amost no chance to select the parent whose fitnessis relatively low
compared with the individual with highest fitness, even if the individual with lower fitness has
some important genes. So a few individuals dominate the selection. Another example iswhere
the range of fitness is very narrow, such as 1000 to 1005. Then the probability of selection for

each individual isamost the same. These two conditionsare undesirable. One way to overcome

thisdifficulty isto scale the fithess before selection (Goldberg, 1989).

Tour nament-Based Selection

The basic tournament selection (Brindle, 1981) is to choose M individuals randomly and
return the best one of these. Thisis generally called size M Tournament selection. After this
selection, the crossover and mutation operator are applied to generate a new child. When the
fitness of thisnew childisbetter than theworst individual of the previousgeneration, replacement
of thisworstindividual occurs. Boltzmann tournament selection (Goldberg, 1990) evolves
a Boltzmann distribution across a population and time using pairwise probabilistic acceptance

and anti-acceptance mechanisms.

2.6.3 Crossover

The crossover operator is one of the most important operators in genetic algorithms. The basic
ideaisto combine some genesfrom different chromosomes. It isthe recombination of bit strings
by exchanging the segments between pairs of chromosomes. Many crossover techniques and

the example will beillustrated here.
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One-Point Crossover

The one point crossover techniqueisthe most simplecrossover technique, but it isvery efficient.
The procedure of one-point crossover isto select one crossover point at random. Genes up to
and including the crossover point are copied to the respective child. The remaining genes are

copied to the alternate child. Assume the chromosomes of parentl and parent2 are as follows:

parentl: 36718425
parent2: 18473256

If position 3 israndomly generated as the crossover position, then two children are as follows:

childl: 36773256
child2: 184|18425

where the first child has the first three genes from parentl, the others from parent2, the second

child has thefirst three genes from parent2, the others from parentl.

Two-Point Crossover

The procedure of two point crossover is similar to that of one-point crossover except that two
positions are selected and only the bits between the two positions are swapped. The first part
and last part of chromosomes are preserved. With the same parents above, positions2 and 5 are

generated as the crossover positions, then two children are asfollows:

childl: 36|473/425
child2: 18|718/256

N-Point Crossover

The procedure of n-point crossover is aso similar to one-point crossover except that n positions
are selected and only the bits between odd and even crossover positions are swapped. The bits
between even and odd crossover positionsare unchanged. Assumethe chromosomesof parentl

and parent2 are asfollows:
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parentl: 36671484258
parent2: 18647323256

If positions 2, 5, 6 and 9 are selected as the crossover positions, then two children can be

generated asfollows:

childi: 36647423258
child2: 18)671/3/842|56

Uniform Crossover

There are two popular multi-point crossover techniques, one is n-point crossover, the other is
uniform crossover. In uniform crossover (Syswerda, 1989), each geneis copied from a parent
based on a random flip of a fair coin, i.e., each gene of the first parent has a 0.5 probability
of swapping with the corresponding gene of the second parent. Assume the chromosomes of

parentl and parent2 are as follows:

parentl: 34518625
parent2: 48379261

A number between 0 and 1 is generated randomly for each position. If the random number
generated for a given position is less than 0.5, then child1 copies the gene from parentl, and
child2 copies the gene from parent2; otherwise, vice versa. If the random numbers generated

for each positionare 0.9, 0.4, 0.1, 0.8, 0.6, 0.5, 0.4 and 0.7, then two children are as follows:

childl: 4* 457 9% 2* 2 1*
child2: 3*831*8*6* 65"

where the crossover points are marked by the symbol *.

Order-Based Crossover

Order-based crossover technique (Davis, 1991) is used when the search space is a permutation,
so that, somehow, crossing 1 3 25 4 with 32 1 4 5 is aways sure to yield another valid

permutation, suchas 15 32 4. Let the following be two parents:
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parentl: 13254
parent2: 54213

Onekind of order-based crossover operator works as follows:

Choose two random genes of thefirst parent, for example
parentl: 132574
Make up the child by first copying the unchosen genes:
child: 1.2 4

and thenfill inthe other values, 3 and 5, but inthe same order asthey occur in the second parent,

yielding:
child: 15234

The uniform order-based crossover is a powerful order-based crossover technique. In thiskind
of crossover, several gene positions of the chromosome are chosen randomly and the order in
which these genes appear in the second parent isimposed on thefirst parent to produce offspring.

The genes in the other positions are the same as the first parent.

2.6.4 Mutation

Selection and crossover effectively search and recombine the chromosomes, but occasionally
they may lose some potentialy useful genes and it is also possible that some useful genes are
not generated in theinitial step. A better result cannot be reached for lack of some useful genes.
Thisdifficulty can be overcome by using the mutation technique. The basic mutation operator is
to randomly generate a number as the crossover position and then change the value of this gene
randomly. For example, if the length of the chromosomeis 6 and a chromosome after crossover

is
147283

A random number generator generates a position 2 as the gene position and the other random

number generator generates any valid gene value, such as 6, then the chromosomeis mutated to
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167283

Another possible approach is to check each gene position using a random number compared
with the mutation rate, if this number is less than the mutation rate, then this gene needs to
mutate. Assume the mutation rate is 0.01, if the random number is 0.005 for the first position
and the random numbers are larger than the mutation rate in the other positions, then this gene

is mutated by a random number in thefirst position, such as 7. Theresult is as following:

747283

If the search space is a permutation, the mutation operation can work by swapping several genes

in the chromosome randomly.

2.6.5 Inversion

In the procedure of inversion, two points are chosen at random aong the length of the chromo-
some and the order of the genes between these two pointsisinverted. Only one parent is needed
in the inversion operation. If two positions 3 and 6 are chosen and the inversion operator is

applied to the string

472598 3

then the new stringis

478 9°5*2"3

2.6.6 Schema Theorem

A schemaH isa pattern of gene values which may be represented by a string of binary symbols
{0, 1} and a symbol # which matches any gene values. For example, the chromosome “01011”
contains, among others, the schemata “"#101#”, "#10##", "01##1” and “#1011”. The order of
a schema denoted by o(H) is the number of non-# symbols in the schemata. The defining
length of a schema denoted by 5(H) is the distance between the outermost non-# symbols.
In this example, the order is 3, 2, 3 and 4 respectively; the defining length is 3, 2, 5 and 4
respectively.
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m(H, t) denotes the frequency of a schema H at generation t. It will change for the next
generation in proportion to the selection of probability of strings. Let m(H,t + 1) be the
frequency of schema H at generation t + 1. The relationship between m(H, t) and m(H,t + 1)
can be expressed as the following formula:

f(H)

m(H, e+ 1) =m(H, )= (2.34)

where f(H) is the average fitness of a string containing schema H. in generation t + 1 and f

represents the average fitness of the whole population.

Let P, bethe crossover probability and 1 be the length of the string. Because a schema survives
when the crossover point is selected outside the defining length, the survival probability under

simple crossover is

S(H) — 1

P.>1-P,
= 11

(2.35)

So, if the reproduction and simpl e crossover operation are independent, the frequency of schema

for the next generation can be estimated as following:

f(H)

S(H) — 1
TR

m(H, t+1) > m(H, t) T

[1-P, 1. (2.36)

The probability that the given schema H. exists in the next generation will be high if the length
of the string L islong and the defining length 5(H) is short.

If the mutation operator isapplied, asinglegenewill survivewith probability 1 —p ., wherep,, is
the mutation probability. Since each of the mutationsis statistically independent, the probability
of surviving mutation is (1 — p,)°"™. Thisis approximated by the expression 1 — P,,o(H) if
pm < 1. Hence, if reproduction, crossover and mutation operators are applied, the frequency

of schema for the next generation can be expressed as following:

f(H)

S(H) — 1
R

m(H, t+1) > m(H, t) T

[1-P, — P,.o(H)]. (2.37)
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This equation impliesthat the short, low order, above average schemata receives exponentially
increasing probability in the subsequent generations, i.e., highly fit schemata of low order and

short defining length are particularly important to genetic algorithms.

2.7 Parallel Processing

A conventional computer uses one processor which executes a set of instructionsin order to pro-
duceresults. At any instant time, there isonly one operation being carried out by the processor.
Parallel processing is concerned with producing the same results using multiple processors. The

goal of using parallel processing isto reduce the running timein a computer system.

Two basic parallel processing methods are pipeline processing and data paralelism. The prin-
ciple of pipeline processing isto separate the problem into a cascade of tasks where each of the
tasks is executed by an individual processor. Asshown in Fig. 2.3, data is transmitted through
each processor which executes a different program on each of the data elements. Since the
program is distributed over the processor in the pipeline and the data moves from one processor
to the next, no processor can proceed until the previous processor has finished itstask and passed

the datato it. Data parallelism is a popular approach which involves distributing al the data to

Data Input Data Output
——= Task 1 Task 2 Task 3

Figure 2.3: Task and data distribution of pipeline processing

be processed equally amongst all the processors in the computer. As shown in Fig. 2.4, each
processor contains the same program task operating on the subset of the data. Data parallelism
can be easily applied to genetic algorithms by dividing the population into several groups and
running the same algorithm for each group at the same time using different processors. Thisis
caled aparallel genetic algorithm (PGA). The purpose of applying parallel processors to
genetic algorithmsis more than just a hardware accelerator. Rather a distributed formulationis

developed which gives better solutions with less computation. In order to reach this function,
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Processor 1 Processor 2 Processor 3

All  tasks All  tasks All  tasks
Data set 1 Data set 2 Data set 3

Figure 2.4: Task and data distribution of data parallelism

the communication among these groups is executed for some fixed generations, i.e., the par-
allel genetic algorithm periodically selects promising individuals from each subpopul ation and
migrates them to different subpopulations. With the migration (communication), each subpop-
ulation will receive some new and promising chromosomesto replace the worst chromosomes

in this subpopulation. This helpsto avoid premature convergence.

2.8 Bound for Minkowski Metric

Given one codeword C, and the test vector X in k-dimensional space, the distortion of the

Minkowski metric of order n can be expressed as follows:

k
Dmin = D(X» Ct) = Z |XiL - Ci " (238)
i=1
where C, = {c!,c?,...,cf} and X = {x', x?, ..., x*}.

The generalized bound for the Minkowski metric based on the L,, distortion measure can be

found as follows;
S

If Y ki —cllP > {/hE Do (2.39)

i=1
k
then > K —cl* > Doin (2.40)
i=1

wheres <h <kandp < n.

If p =m, then Eq. 2.39 reduces to Eq. 2.40. For the case where p < n, the bound can be proved
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asfollows:

Apply Lagrange multiplier technique to

h
minimize Z ai” (2.41)

i=1

subject to Z a; =c, a; >0 Vi (2.42)
i=1

If the minimumisat an interior point, then it is a stationary point of

fla, )= Y al = A(X 1L, @i — c) with respect to ai(1 < i < h) and A.

Taking derivatives, 2= = ma™™' — A = 0 Vi.

Hence a; = (A/m)ﬁ Vi (whichimpliesa; = a; V1, j) and so, to make g—; =0,a; =c/h Vi

Hare T, P = 78 e/ = R/ = -

The next step is to prove that the climax ZL a™ = h'=™m¢™ is the minimum point, and so to

prove the following proposition.

If ai=c (2.43)

h
then Z a™ > h'"™mc™m (2.44)
i=]

wherem > 1, h > 1,and a; > 0 for dl i.

This can be proved by induction. When h = 1, Eq. 2.43 reduces to a; = c and Eq. 2.44 to

a™ > c¢™. Hence the propositionistrue for h = 1. Assumeit istrue for h — 1. By using the

Lagrange multiplier technique, if the minimum of ZL a™isat aninterior point (a; > 0 for all

1), then thismust be at the point where a; = ¢/h for al 1, at which point ZL a™ =h!-mcm, At
h—1

anon-interior point (without loss of generality, a=0), ZL ar=y 5 ar> (h—1)"mem >

hl=-mcm,
The minimum cannot be at the non-interior point since the value there is greater than at the
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interior point already found and hence the value where a; = c/h isin fact the minimum. The

proof is completed.

Henceif ¢ > /™ D, then Y1 al > h!=™me™ > h=™(h™ D i) = D i
Set a; = b?, henceif 3 I bY > Y/h™ 1D, then T 1 bY™ > D .

Setpm =mn, henceif Y, b2 > {/hv~"Dpin, then 312, b2 > D i

Setb; = [x'—ci|,hence Y ", |x'—ci[? > ¥ [x'—ci|"ifh > s, thenthebound for Minkowski

metric based on L, metric is derived.

If Eq. 2.39 is met, then C; cannot be the nearest neighbour to X for the Minkowski metric of

order n.

This bound has the following properties :
1. Sets=p =h =1 andn = 2, the hypercube approach.

2. Setp =2 and n = 2, the partial distortion search (PDS) for the Euclidean distortion

measure.
3. Setp =n, PDSfor L, distortion measure.
4. Setn=2,p =1andh =k, absolute error inequality (AEI) criterion.

5 Setn =2andp =1, defined here as the improved absolute error inequality (IAEI)

criterion, provides a tighter bound than the absolute error inequality (AEI) criterion.

6. For the Minkowski metric of order n, thisbound providesthe eliminationcriterionfromL
metricto L,, metric and al so provides an advanced approach by adapting parameters s and
h from 1 tok, i.e, thisbound can be separated into several sections. For 13-dimensional
coefficientsand the Euclidean metric, itispossibleto separate thisboundinto four sections.
These four sections are to set h = 1 to check the first dimension-difference, h = 4 for the
sum from the first dimension-difference to the fourth, h = ¢ for the sum from the first

dimension-difference to the ninth and h = 13 for the sum of all dimension-differences.
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2.9 Bound for Quadratic Metric

In speech recognition, the hidden Markov model (HMM) with the Gaussian mixture VQ
codebook probability density function has been shown to be a promising method. The main
computation time is in searching the nearest neighbour by evaluating the log likelihood of
Gaussian mixture distributions, i.e., the calculation of

log — 1(X= C) W3 ' (X=C) (2.45)

That isto compute ¥log(27) + 1log| W] + 3(X — C)* W' (X — C,.), wherem isfrom 1to N
and N isthe number of mixturecomponents. C,,, and W.,, are the mean value and the covariance
of mixture component m. Obviously, the quadratic metric (X — C.,)*W:'(X — C,,) dominates

the computation time.

For convenience and brevity, assume that the covariance of every mixture component m isthe

same. The quadratic metric can be expressed as

DX, Cr) =(X = C)'W'(X = Cy) (2.46)

where (X — C,,) iserror column vector and W isthe covariance matrix given as:

_ 1 u ) "\t
W= ;(xi - X)X — X) (2.47)

where T is the number of training vectors and X isthe mean of X, i = 1,...,T,i.e,
- 1 d
X==) X; 2.48
TZ (2.48)

W~ is the inverse of the covariance matrix W. For the conventional exhaustive method,
k(k +1)N multiplications, (k? +k — 1)N additionsand N — 1 comparisons are needed for every
test frame.

29.1 Maetric Transform Using Triangular Matrix

The quadratic metric is transformed to the Euclidean metric using the lower triangular matrix

and the upper triangular matrix in this subsection. By applying the improved absolute error
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inequality criterion to the metric transform, the bound for quadratic metric is obtained.

Given that W' can be represented in terms of the product of the lower triangular matrix and

the upper triangular matrix according to Eq. 2.49 as

w-=11!
LH 121 131 Lkl
O Lzz 132 Lkz

L=1 0 0 1y .. Ls

0 0 0 .. L«

Set B, = X — C,,, then the quadratic metric can be expressed as follows:

D(X,Cp) =EL LL'E,, = |EL LJ?

Set L =[V,V,V;...V,], and assume

k
Dmin = D(X» Cm) = Z |E$nv1|2

i=1
If > [EfVi| > VhDpin,
i=1

then D(X, C;) > Din

wheres < h < k.

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

After modification of the quadratic metric to Eq. 2.51, the improved absolute error inequality
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(IAEI) criterion can be easily applied as shown in Eq. 2.52 to Eq. 2.54.

29.2 Maetric Transform Using KLT

The Karhunen-L oéve transform (KLT) is also called the eigenvector transform, principal com-
ponent transform and Hotelling transform. 1t is an optimal transform in a statistical sense under

avariety of criteria The KLT hasthe following properties (Elliott, 1982):

1. Itisthe best vector transform in the sense of decorrelating the sequence completely in the

transform domain.
2. It packsthe most energy (variance) to the low order elements.

3. It minimizes the mean squared error (MSE) between the origina and reconstructed data

for any specified bandwidth reduction or data compression.

4. 1t minimizesthetotal entropy of the data sequence.

Eigenvectors of the covariance matrix of a given sequence are the basis functions of the KLT.
Assume P and A are the eigenvector and diagona matrix of eigenvalues, respectively. The

guadratic metric can be transformed to the Euclidean metric asfollows:

DX, Cr) =(X = C )W '(X = Cy)

= (X — Cp)Y{PAP} 7' (X = Cn)

A 00 0
0 A 0 0

=X=C)4P| 0 0 A, .. 0 |PI'X-Cw)
0 0 0 .. A
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=(X-C,HP

= (X - Cp)H{P"

=(X-C,)HP

-
-

B

(]

k
=(X- Cn)'QQ' (X - Cr)=UU=) u'f,

1
VA

35

0 P_]}(X_ Cm)

Ak

0

0

O Pt}(X - Cm)

1

Mo

0 0 0

L0 0

Vors

t
0 = 0 |PHX—-Ch)
0 0 |
(2.55)

i=1



where

= 0 0 0

0 = 0 0
Q=P| o0 o0 = 0 |,
I Jx—k_

U =Q*X - C,,) and u' isthe element of the row matrix UL.

Apply the IAEI to Eq. 2.55 and assume the current minimum distortion

D min = D(X, C). (2.56)

If Z |LL1| Z V thin» (257)
i=1

then DX, C;) > Din (2.58)

wheres < h < k.

After the transform of quadratic metric to Eq. 2.55 using KLT, another bound for quadratic
metric is derived as shown in Eq. 2.56 to Eq. 2.58.
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Chapter 3

Efficient Codeword Search Algorithms

Vector Quantization (VQ) (Gray, 1984; Gersho & Cuperman, 1983; Buzo et al., 1980) has been
widely used for various applicationsinvolving VQ-based encoding and VVQ-based recognition.
The response time of encoding and recognition is a very important factor to be considered for
real-time applications. Unfortunately, a full search algorithm is applied in VQ encoding and
recognition and this is a time consuming process when the codebook size is large. A vector
guantizer of rate r bits/sample and dimension k isa mapping from a k-dimensional vector space
into somefinite subset C = {C;;j =1, ..., N},where N = 2¥". The subset C iscalled acodebook
and its elements C; are called codewords, codevectors, reproducing vectors, prototypes, or
design samples. A distortion measure D (X, C;) isanon-negative dissimilarity measure between
vector X and codewords C;. This distortion is used to measure how close the input vector X
is to these codewords C;. The nearest codeword is to be selected in order to encode the input
vector X. Therefore, encoding each input vector requires N distortion computationsand N — 1

comparisons.

The codeword search problem in vector quantization isto assign one codeword to the test vector
in which the distortion between this codeword and the test vector is the smallest among all
codewords. Given one codeword C, and the test vector X in the k-dimensional space, the

distortion of the squared Euclidean metric can be expressed as follows:

D(X,C) =) (x'—cl), (3.1)
i=1

where C, = {c!,c?,...,c}and X = {x',x?, ..., x*}.
t t t
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Each distortion calculation requires k multiplications and 2k — 1 additions. Therefore, it is
necessary to perform k2" multiplications, (2k — 1)2*" additions, and 2*" — 1 comparisons
for encoding each input vector. The computation complexity depends on codebook size and
dimensions. It needs large codebook size and higher dimension for high performance in VQ
encoding and recognition systems resulting in increased computation load during codeword

search.

3.1 History of Codeword Search

Since codeword search is a serious problem in real time application of vector quantization, the
history of codeword search will be introduced first, then a series of efficient methods will be

presented in this chapter.

3.1.1 Partial Distortion Search

The partia distortion search (PDS) algorithm (Bei & Gray, 1985) is a simple and efficient
codeword search algorithm which allows early termination of the distortion cal culation between
atraining vector and a codeword by introducing apremature exit condition in the search process.

Given the current minimum distortion,

D(X» Ct) = Dmin» (32)

if D (¢ = ¢)* = Do, (33)
i=1

then D(X, C;) > D(X, Cy), (3.4)

where s < k.

The efficiency of PDS derives from elimination of an unfinished distortion computation if its
partial accumulated distortion is larger than the current minimum distortion. This will reduce
computation to (k — s) multiplicationsand 2(k — s) additions at the expense of s comparisons.

The detail algorithm of the partial distortion search isdescribed as follows:

Step 0: Set Dinin = oo (avery large number), i =1, and jin =j = 1.
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Step 1. If j > N, then terminate the algorithm and record j..., as the index of the nearest

codeword; otherwise D = 0.
Step 2: D =D +(x' — i)’
Step 3: If D > Dy, thenj =35 + 1 and go to step 1; otherwise go to step 4.
Step 4: Ifi < k,theni=1i+1 andgotostep 2; otherwise D 1in = D, jimin =3,j =j+1and go

tostep 1.

The efficiency of the partial distortion search (PDS) algorithm can be further improved by
ordering the codewords (Paliwal & Ramasubramanian, 1989). Thisrequires calculation of the
probability P; for each codeword from the training data: P; is the probability of the codeword
C; which is nearest neighbour to the training data. The codewords are then arranged in the
codebook in the order of decreasing P;. After this arrangement, the probability of obtaining the

nearest codeword in the early stage can be increased which helps in saving computation time.

3.1.2 Hypercube Approach

The hypercube approach is a well known premature method (Lo & Cham, 1993) which is
efficient if the difference for any coefficient is generally larger than the difference of the other
coefficients, such as the first coefficient of cepstrum coefficients. Assume Eq. 3.2 has aready

existed,

if [x' = ¢i| > v/ Dumin, 1<i<k, (3.5)
then C; will not be the nearest neighbour to X.
There is no multiplication operation required for the test of the hypercube approach.

3.1.3 AbsoluteError Inequality Criterion

Theabsolute error inequality (AEI) criterion (Soleymani & Morgera, 1987b) isthe mathematical
relationship between the city block metric (or L;) and the Euclidean metric (or L;). Assume C,

isthe current nearest neighbour to X, that is,

D(X» Ct) = Dmin»
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if > ' =l > VKD yin, (3.6)
i=1

k
then Z(xi — ¢})* > Diin, (3.7)
=

where s < k.

Thismeans C; will not be the nearest neighbour to X if Eq. 3.6 issatisfied. Thiscriterion can be
estimated by comparing the first dimension-difference of the test vector and codeword with the
right hand side of Eq. 3.6. If EQ. 3.6 is not satisfied for s = 1, then this criterion is checked for

higher s. Thiscriterion is checked by increasing s until s = k or the criterion is satisfied.
3.1.4 Triangular Inequality Elimination

Triangular inequality elimination (Pan, 1988) is an efficient method for codeword search. Let
V bethe set of data vectors and C be the set of codewordsand x, y belongtotheset V. OnV, a
distortion measureisdefined asamapping d: V x V — R, whichisassumed to fulfill the metric

properties:

d(x,y) > 0;d(x,y)=0 iff x=y (3.8
d(x,y) = d(y,x) 3.9
d(x,y) +d(y, z) > d(x,z) (3.10)

AsshowninFig. 3.1, let C;, C;, C; be three different codewords and t be a test vector, then

the following three criteria are obtained.

e Criterion 1:

Given the triangular inegquality

d(t, Cy) +d(t, Gy) > d(Gy, Cy); (3.11)
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C2

d(C1,C2) d(C2,C3)
c1

d(t,C2)
d(t,C1) d(t,C3)

t

C3

Figure 3.1: Distortion diagram of test sample and codewords

e Criterion 2;

if

then

Given the triangular inegquality

e Criterion 3:

d(C;

if

then

Assume

Given

d(Cy, Cy) > 2.d(t, Cy),

dt, Cz) > d(t, Gy).

s CZ) S d(t» CZ) + d(tv C3)1

d(Cs, Cy) > d(t, Gy) +d(t, Cy),

d(t, Gy) < d(t, G).

d(t, Cy) < d(t, Gy).

d(C3» CZ) Z d(t> CZ) - d(t> C3)1
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if d(Cs, Cy) < d(t, Cy) — d(t, Gy), (3.18)

then d(t, Cy) < d(t, Cs). (3.19)

Criterion 2 and 3 can be merged to one criterion only, i.e.,

if d(t, Cy) < (G5, Cy) — d(t, Cy)|, (3.20)

then d(t, Cy) < d(t, Cs). (3.21)

To use Criterion 1, these distortions between all pairs of codewords are calculated in advance.
If Eg. 3.12 ismet, then the computation of d(t, C,) can be omitted if d(t, C;) has aready been
computed. Criterion 1 can be modified for square error distortion measure. In the codeword
searching system, atable is made to store one-fourth of the values of square distortion between
codewords, i.e., store the value of d*(C;, C;)/4, fori=1,2,..,N;j =1,2,...,N. Here N is
the number of codewords. The overhead of criterion 1 is to establish the distortion table in
which N(N — 1)k/2 multiplicationsand N(N — 1)(2k — 1)/2 additions are needed. As shown
in Fig. 3.2, the physical meaning of Criteria2 and 3 can be described asfollows:

If the codeword C;,1 # 1, 2, does not locate between the two concentric circles (or in general
hyperspheres) centered on C, with radii d(t, C,) £ d(t, C,), the computation of its distortion
to the test sample can be omitted, i.e, if d(C;,Cy) > d(t,C,) + d(t, Cy) or d(C;, Cy) <
d(t, C;)—d(t, Cy), theneliminatethecomputation of C;. For thespecial cased(t, C;) = d(t, C»),
Criterion 3 isinappropriate and Criterion 2 reduces to Criterion 1. Since Criterion 2 and 3 will

induce sguare root computation, it is simple and efficient to use Criterion 1 only.

3.1.5 Approximating and Eliminating Search Algorithm

The approximating and eliminating search algorithm (AESA) was proposed by (Vidal, 1986).
The detail of thisalgorithm is described as follows:

Step 0: Caculate MNZ—‘Q distortionsfor every possible pair of codewords, N is the number of

codewords.
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d(t,C1) + d(t,C2)

V>

d(t,C2)

Figure 3.2: Geometric diagram for Criteria 2 and 3 of triangular inequality elimination

Step 1: Compute d(X, C;), C; isaselected codeword and X isadatavector. Set U = {C;} and
n = i. Here n is codeword index of the current nearest codeword and U is a set of used

codewords.
Step 2: Eliminate codeword C; if d(C;, C;) > 2d(X, Cy).

Step 3: If al codewords are eliminated or used, then terminate the program; otherwise, s =

argmin,(3_ . 1d(Cy, C) = d(X, Cy)|). C, isan unused and non-eliminated codeword.
Step 4: Calculate d(X, C;)and U =U U {C,}.

Step 5: Find the current nearest codeword index n = argmin,en ;d(X, C;). If n = s, then
Q = U; otherwise, Q = {C,}.

Step 6: Eliminate the unused and non-eliminated codeword C; if d(C;,Cq) > d(X,Cy) +
d(X, Cy) or d(C;, Cy) < d(X, Cy) — d(X, Cy.), where CqeQ. Goto step 3.
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In step O, the distortionsfor every possible pair of codewords are calculated off line. Steps1 and
2 areinitializationsof thisalgorithm. Criterion 1 of the triangular inequality elimination used in
step 2 isnot efficient because the value of d(X, C;) may belarge, since C; is selected randomly.
The tentative matching codeword is found in step 3. In step 4, the distortion between the data
vector and the tentative matching codeword is calculated. The nearest codeword is updated in
step 5. The potential for matching impossible codewords is eliminated using Criteria 2 and 3
of the triangular inequality elimination in the last step. The main effect of this algorithm is to
find an efficient tentative matching codeword and then Criteria 2 and 3 of triangular inequality
eliminationare applied to eliminateimpossiblecodeword matching. Here, thetentativematching

codeword is a non-eliminated and unused codeword which satisfies Eg. 3.22.

Co =ming, (D [d(Cy, C1) — d(X, C)). (3.22)

C1 el
This tentative matching codeword is the approximation of the nearest to the intersection of all

hyperspheres with radius d(X, C,), VC,el.
3.1.6 Minimax Method

The minimax method (Cheng et al., 1984) isto take the codeword with the minimum value of
the maximum dimension-distortion as the tentative match and then use the hypercube approach

and the partial distortion search (PDS). The minimax method is depicted asfollows:

Step 1: For the given test vector X and codebook C, calculate the absolute error e;; = |x' — cif,
i=1,2,..,kj=1,2,...,N.

Step 2: Find the maximum component of each error vector, that is to find max;e;; for each
codeword. For convenience, interchange the maximum component of error vector with
€15.

Step 3: Find the minimum neighbour 1 =arg min;max;e;;.

ko2

Step 4: Find the squared Euclidean distortion D i = Y, €4.

Step 5: Use the hypercube approach, i.e., if maxiei; > v/Dmin, then ¢; will not be the nearest
neighbour to X. Use the PDS to delete the rest of the codewords.



3.1.7 Previous Vector Candidate

For speech data, the classification result of the present vector is usually the same as or close to
the classified result of the previous vector. The nearest codeword of the previous vector can be
used as the tentative match called previous vector candidate which is first proposed by (Pan,
1988; Chen & Pan, 1989).

Invector quantization of images, dataarefirst dividedinto subsequent blocksof sizek = M. x M.
The previous vector candidate has aso been applied to image coding (Huang & Chen, 1990)
by taking the advantage of high correlation between contiguous subimages. Let C(m, n) denote
the nearest codeword of the block image X(m, ). Asshownin Fig. 3.3, the nearest codewords
of the four adjacent blocks are used as the tentative matching codewords, i.e., calculate the
distortions between the data vector X(i, j) and codewords C(i — 1,7),CGi - 1,7 — 1),C(i,j — 1)
and C(i+1,j — 1). The codeword with the minimum distortion is chosen as the candidate. Then
the Criterion 1 of the triangular inequality elimination is used to eliminate impossible codeword
matching. Partial distortion search (PDS) isused as the |ast stage to calculate the distortion for
therest of the codewords. The previous vector candidate has also been applied to image coding
using vector quantization by (NgwaNdifor & Ellis, 1991). Only one codeword C(i — 1,3)
is used as the tentative match and only the partia distortion search (PDS) is applied in this
algorithm. The previous vector candidate, Criterion 1 of the triangular inequality elimination
and the partial distortion search were also applied to Manhattan (Chebyshev) metric for VQ
image coding by (Nyeck et al., 1992).

3.1.8 Subcodebook Search Algorithm

A subcodebook search (SCS) agorithm (Lo & Cham, 1993) was developed for efficient VQ
encoding of images. This algorithm a so takes the advantage of high correlation between two
adjacent blocks. The control codeword is one of the four nearest codewords of the four
adjacent blocks which has the smallest distortion to the current encoding block. In the training

phase, the decision distortion for each control codeword is decided from Eq. 3.23.

Di=) Pe(C)D(C,Cy), (3.23)

j=1
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C(@-1,j-1) C(i,j-1) C(3i+1,]j-1)

C@i-1,)) =T X(@,)) X(@i+1,])

X(@-1,j+1) X(@,j+1) X(i+1,j+1)

Figure 3.3: Diagram of four adjacent codewords for image coding

where 1 <1 < N, P¢,(C;) isthe probability that the best match to the training data vectors is
the codeword C; when the control codeword is C; and the squared Euclidean distortion measure

isapplied.

The subcodebooks can be constructed by grouping those codewords having distortion to the
control codeword C; smaller or equal to 4D;. The additiona memory requirements for SCS
algorithmaretwotables: the decision distortionfor each subcodebook and the mapping codeword

indices for each subcodebook.

In the encoding phase, the control codeword C; is determined first. Compare the distortion
D(X, C;) and thedecision distortion D ;, here X isthe datavector. If D(X, C;) > D;, then search
the whole codebook; otherwise, search the corresponding subcodebook. In searching the whole

codebook or subcodebook, the partial distortion search and hypercube approach are applied.
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3.1.9 Fast Sliding Search Algorithm

The fast dliding codeword search agorithm was presented by (Koh & Kim, 1988). This
algorithm uses the codeword with the most similar sum of componentsto the data vector asthe

tentative matching codeword, i.e., find a codeword C; such that

k k

i=argmin| Z x — Z cll. (3.24)

5=1 5=1

In the training phase, the sum of all dimensions for each codeword is calculated first and these
values are sorted in increasing order or decreasing order. In the encoding phase, the tentative
matching codeword is obtained by using Eq. 3.24. Thenp codewords are searched from C;_» to
Ciry_y Whichisillustratedin Fig. 3.4. If 1 — & < 1, then search the codeword from C, to C,,. If
i+ 5 —1 > N, then search the codeword from Cy_+; to Cy. Thisagorithmisan approximate

search algorithm.

Tad
2 G

T .
Zj:] Cl—%—l
SrCLs

=7

Z;(:] Cl

k j
Zj:l Ci+%—l
k j
Zj:l Ci+%

Zr:]! C%\I.—]
2_i=1 Cn

Figure 3.4: Search strategy of fast sliding search algorithm

3.1.10 Equal-average hyperplane partitioning method

The equal-average hyperplane partitioning method for vector quantization of image was pro-
posed by (Guan & Kamel, 1992). This method utilizes hyperplanes orthogonal to the central
line | to partition the search space. Any point on | has the same value for every dimension. As

explained in (Lee & Chen, 1994), each point on a fixed hyperplane H, which is orthogonal to
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the centra linel and intersectsl| at point Ly = (1my, My, ..., my), Will have the same mean value

my, such ahyperplaneiscaled an equal average hyperplane.

In the training phase of the equal-average hyperplane partitioning method, the sum of al di-
mensions for each codeword is calculated and divided by k first. These values are sorted in
increasing order. It issimilar tothe fast sliding search algorithm. In the encoding phase, the

mean of the data vector is calculated as

Then the tentative matching codeword is found first by using the same method as the fast

sliding search algorithm, i.e., calculate Eq. 3.25.

. . 1<
i=argmin|m, — ” Z cyl. (3.25)

j=1

Compute the distortion between this data vector X and the tentative matching codeword C,

Any other codeword which is closer to the data vector X than the tentative matching code-
word C; will be located inside the hypersphere centred at X with radius d;. Projecting
the hypersphere on I, two boundary projection points Li.ox = (Mimax, Minaxs ++s Mimax) and

Linin = (Mamin, Manin, ---, Mmin) ON | can be found, where

d.
Moay = My + — 3.26
NG (3.26)
and
Mimin = My — d (3.27)
min X \/E' .

Hence, only the codewords with mean value from m..;, t0 M., are searched. The equal-
average hyperplane partitioning method uses the mean value to eliminate unlikely codewords
and hence much computation time is saved. Thisalgorithm is further improved by introducing

thefollowing formula (Lee & Chen, 1994):

if Vx = Ve,| > di, (3.28)
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then d, > di, (3.29)
where

(3.30)

Z (Xj - mx)z
5=1

k
Ve, = | ) (¢h - me,) (3.31)
j=1

If Eq. 3.28 ismet, then C,, will not be the nearest codeword to data vector X. By testing Eq. 3.28
first, if it is not satisfied, then check if

My > Miax (3.32)

or

m, < Muin. (3.33)

If they are still not met, then cal culate the distortion between X and Cp. Note that memory size
of N(k+2) isneeded for thisalgorithm compared with N (k+1) for the equal -average hyperplane
partitioning method.

3.1.11 Fast Full Search Equivalent Encoding Algorithm

The fast full search equivalent encoding algorithms (Huang et al., 1992) utilize the minimum
mean distance as the tentative matching approach, then apply the three criteria of triangular
inequality elimination to reject unlikely codeword matching. The first algorithm uses the
minimum mean distance as the tentative matching codeword and Criterion 1 of the triangular

inequality elimination as the elimination method which is described as follows:

Step 1: Computery = Y -, x'.

Step 2: Find codeword C;, such that i = argming| Y\, x' — ¥ & cll.

Step 3: Calculate the Ly distortion dpirn = d(X, Ci) = Y, [x! = cll.

Step 4: Check the termination of this program. If 420 > g . then omit the distortion

calculation of codeword C,,, set p =p + 1 and goto step 4; otherwise, goto next step.
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Step 5: Calculate d(X, C,), update d.in, = min{d(X, C;), dmin } andi = argmin{d(X, Cy)},
setp =p + 1 and goto step 4.

From Criteria 2 and 3, codeword C, can be eliminated if it does not satisfy the following
inequality:

(X, Z) — d(X, C;) < d(Z, C,) < d(X, Z) + d(X, Cy), (3.34)

where d(X, Z) isthe L; distortion between data vector X and any other vector Z. By setting the

vector Z to the origin, thisinequality can be rewritten as

k k k
D W —dX,C) < Y el < Y X +d(X, Cy). (3.35)
=1 =1 =1

If Eqg. 3.35 is not met, then eliminate codeword C,,. Combining Eq. 3.35 with the minimum
mean distance as the tentative matching approach is the algorithm 2 in (Huang et al., 1992).
Combining Criterion 1 of triangular inequality elimination, Eqg. 3.35 and the minimum mean
distance as the tentative matching approach is the algorithm 3. In terms of the total number
of mathematical operations, algorithm 1 outperforms the other two algorithms. In terms of the

number of multiplications, algorithm 3 is superior to the other two algorithms.
3.1.12 Adaptive Fast Encoding Algorithm

From Eq. 3.34, the vector Z can be set to any value. This inequality will be very efficient if
small values of d(X, Z) and d(X, C;) are selected. Eq. 3.34 provides different constraints on the
test codewords for different values of vector Z. In previous work (Salari & Li, 1994), three
values of vector Z are selected such that three smaller d(X, Z) are provided. Hence codeword

Cp can be eliminated if C,, cannot satisfy any of the following three inequalities:

d(X, Zo) — d(X, C;) < d(Zo, Cy) < d(X, Z) +d(X, Cy),
d(X, Zy) = d(X, C;) < d(£4y, ) < d(X, Zy) +d(X, C3),

d(X, £) — d(X, C;) < d(£2, C;) < d(X, Z5) +d(X, Cy),

50



where d(Z.,, C,) can be calculated off line, m=1,2 and 3, p=1,2,...,.N. Z,; is set to origin and
codewords are sorted in ascending order of d(Zo, C,). Three tables A, A; and A, are built
to store ascending ordered values of d(Z,, C,), d(Z,C,) and d(Z;, C,), respectively. Two
index tables B, and B, are used to store the codeword indices corresponding to the ordered
d(Z,,C,) and d(Z;, C,) tables. In the encoding phase, only the codewords Cp satisfying these
three inequalities simultaneously are needed to compute the distortion, i.e., the final subset of

codewordsis
{Cp L < Ba(p) £ Lyny < Bi(p) < mpymy <p < myf,

where m; istheindex of the first element of A, whose value exceeds d(X, Z,) — d(X, C;) and
m, is the the index of the last element of A, whose value is smaller than d(X, Z,) + d(X, C);
n, isthe index of the first element of A; whose value exceeds d(X, Z;) — d(X, C;) and n; is
the theindex of thelast element of A whose valueissmaller than d(X, Z;) + d(X, Cy); 1, isthe
index of the first element of A, whose value exceeds d(X, Z,) — d(X, C;) and 1, istheindex of
the last element of A, whose valueis smaller than d(X, Z,) + d(X, C;). If any codeword cannot
be eliminated using these three inequalities, then calculate the distortion of d(X, C,,) and update

the current nearest codeword and the current minimum distortion.
3.1.13 Fast MM SE Encoding Technique

The fast minimum mean squared error (MMSE) encoding technique (Soleymani & Morgera,
1989) assumes codewords C;, i = 1,2, ..., N, partition the space R* into N regions S;, i =
1,2, ..., N, such that

k k
Si={X:) (¥ —c) <> (¥ —cl), allj}.
p=1 p=1

For each codeword C;, let r; = +/D; where

k
Di = maxxes, y_(x* — )’ (3.36)
p=1
For any given input data vector X, if

X" = cf| >, (3.37)
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for somepe{1,2,...,k}, then C; will not be the nearest codeword to X. Combine Eq. 3.37 with
the hypercube approach such that the codeword C; can be rejected if

X" — cf| >, (3.38)

where r'i = min{ri, v'Dmin } @d D1, iSthe current minimumdistortion found before checking

the codeword C;.

From thetraining data, calculate r; for each codeword C;, 1 =1, 2, ..., N and sort r; inincreasing

order and also sort the codebook accordingly. Hence, after finding some codeword C, such that

k
Z(xp — )2 =Dmin <7, (3.39)
p=1

there is no need to compare /D i, Withr; for i > 1. The fast MMSE encoding technique can
be depicted asfollows:

Step 1: Seti=1andj=1.
Step 2: Whilei < N (N isthe number of codewords), calculate step 3 to step 6.
Step 3: Calculatee; =[x/ — cl|.

Step 4: If e;; > 1, seti=1+1,j=1andgo tostep 2; otherwise, if j < k (k isthe number of
dimensions), setj =j + 1 and go to step 3.

Step 5: Calculate dm =17, d = e;; * e;y. Setj = 2.

Step6: Ifj >k, setm =1i+1, Dyyn = d and go to step 7. Calculate d = d + ey * ey, if
d > dm,seti=1+1 and goto step 2; otherwise, setj =j + 1 and go to step 6.

Step 7: Setj =1. Whilem < N, calculate step 8 to step 11.
Step 8 Caculatee,,; =[x — ¢] |.

Step 9: If ey > v/Dmin, SStm=m+ 1 and goto step 7. otherwise, if j < k, setj =j + 1 and
goto step 8.

Step 10: Calculate d = e * ey. Setj = 2.
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Step 11: Calculate d = d + ey * e, if d > Do, St m =m + 1 and go to step 7; otherwise,
setj=j+1andgotostep 11.

Step 12: Set Doy = d, m=m+1, record C,,, asthe current nearest codeword to vector X and

gotostep 7.

In thisalgorithm, the hypercube approach and PDS are combined with r; from step 1 to step 6;
the hypercube approach and PD S are aso combined with the current minimumdistortion D 1,
from step 7 to step 12. The main idea of thisalgorithm is to create r; from the training data and

sort r; in increasing order.

In addition, t;, the maximum dimension-distortion for the input data vector in S ;, can be used
instead of r;, defined as

ti = Mmaxxes,max,|x” — cl|. (3.40)

Since the maximum dimension-distortionis|essthan the square-root of thetotal distortion, using
t; instead of r; may result in a more efficient algorithm. Note that the fast MMSE encoding
techniqueis an approximate search algorithm and occasiona encoding errors will happen in the
nearest neighbour assignment. In order to reduce the encoding errors, asmall value added to r;
or t; isneeded.

3.1.14 Projection Method

For the projection method of codeword search for vector quantization (Cheng et al., 1984),
Eq. 3.41 and Eqg. 3.42 are computed from the training data.

Tij] = mCLXXeCin. (341)

TijO = minxecj Xi. (342)

Sort Ty in the increasing order for each dimension, wherei = 1,2,...,k,j = 1,2,...,N and
m = OQorl. There are 2N — 1 contiguous intervals for each dimension. For each dimension,
create atable where the lth column indicates whether ¢, isa candidate and the pth row indicates

that x; islocated in the pthinterval. The entry of thistable can be 1 or 0 to express candidate or
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non-candidate. It can also betheindex of the codevector for the candidate. 1nthe encoding stage,
theinterval for each dimensionisdeterminedfirst. The possible candidatesare the candidatesfor
the intersection of these k tables given the row for every table. This method is an approximate
search algorithm. Occasional encoding errors will occur in the codeword search. In order to

reduce the encoding error, Eq. 3.41 and Eq. 3.42 can be modified as follows:

Tij] = TTLCLXXeCin + 6]'] N (343)

TijO = minxecjxi — 6]'0, (344)
where &;; and 6, are small valuesand j = 1,2, ..., k. The values of 4;; and &;, can be decided

from experiments.

3.2 Improved Absolute Error Inequality Criterion

The improved absolute error inequality criterion (IAEI) (Pan et al., 1995a; Pan et al., 1995b)
isa special case of the bound for Minkowski metric (Pan et al., 1996b). TAEI criterion can be
depicted as follows:

S

if > X = ¢l = VhDuin, (3.45)
i=1
k
then > (' = c})’ > D, (3.46)

wheres < h < k.

The IAEI criterion can aso be proved asfollows:

Leta; = [x' —ci|ands < h < k. Then

0<Z(a1 Z]%)%Zaf—%za{mz(z Gy = Za— (Zal)z (3.47)

i=1 i=1 =1 i=1  j=1

Hence
h

Z ai)? > %(Z a)’. (3.48)
i=1

I\/]:

aizz

i~

-
1

Henceif > ;_, ai > vVhDmin,



then Eq. 3.48 becomes Y -, a? > L(vhD in)? = D in-

The main difference between the IAEI criterion and the AEI criterion isthat s and h are used
instead of k in Eq. 3.45. Since h can be adapted with s which can be set to a smaller value than
k, the IAEI criterion provides a tighter bound than the AEI criterion.

3.21 Fast AlgorithmsUsing | AEI

The fast algorithm is generated using the codeword with the minimum value of the maximum
dimension-distortion as the tentative match and applying the improved absolute error inequality
(IAEI) criterion and partial distortion search (PDS). Thisnew fast codeword searching algorithm

is described as follows:

Step 1: For the given test vector X and codebook C, calculate the absolute error e;; = [x* — cif,
i=1,2,..,kj=1,2,...,N.

Step 2: Find the maximum component of each error vector, that is to find max;e;; for each
codeword. For convenience, interchange the maximum component of error vector with

€15.

Step 3: Find the minimum neighbour 1 =arg min;max;e;;.

Step 4: Find the square Euclidean distortion D .., = Zk e’

i=1 “it-

Step 5: If Y7, eij > v/hD min, then ¢; will not be the nearest neighbour to X, wheres < h < k.
Use the PDS to delete the rest of the codewords.

In this new fast codeword search agorithm, for s = h = 1, it is the same as the hypercube
approach in step 5 of the minimax method. By adapting the values of s and h from 1 to k, this

algorithm eliminates a very large number of multiplications.
3.2.2 Minimax method with AEI approach

In this section, the new fast codeword search algorithm using IAET described in the previous
sub-section is compared with the minimax method as well as the minimax method including
the absolute error inequality criterion. The approach of the minimax method including AEl is

described as follows:
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Step 1: For the given test vector X and codebook C, calculate the absolute error e;; = |x' — cif,
i=1,2,..,kj=1,2,...,N.

Step 2: Find the maximum component of each error vector, that is to find max;e;; for each
codeword. For convenience, interchange the maximum component of error vector with

€15.

Step 3: Find the minimum neighbour 1 =arg min;max;e;;.

Step 4: Find the square Euclidean distortion D i, = Y&, 2.

Step 5: Use the hypercube approach, i.e., if max;e;; > /D nin, then delete the codeword c;.
Use the AEI criterion, i.e,, if ) I [x' — ci| > /KD, then ¢; will not be the nearest
neighbour to X, where s < k. Use the PDS to delete the rest of the codewords. Here the
AEI criterion is applied by adapting s from 1 to k.

3.23 Experiments

Thetest materialsfor these experiments consisted of two hundred words recorded from one male
speaker. The speech was sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients
with inverse variance weighting were computed over 20 ms-wide frames with a 5 ms frame
shift. The purpose of inverse variance weightingisto equalize theimportance of every cepstrum
coefficient. A total of 20,030 analyzed frameswere used in the codeword searching experiments.
Codebooks of size 64, 256 and 1,024 codewords with Euclidean distortion measure are used in

these experiments.

Experiments were carried out to test the performance of the minimax method; the minimax
method with absolute error inequality elimination rule; and the new fast search algorithm
described above. The bounds for IAEI were separated into four sections. These four sections
were to set h = 1 to check the first dimension-difference, h = 4 for the sum from the first
dimension-difference to the fourth, h = ¢ for the sum from the first dimension-difference to the
ninthand h = 13 for the sumof all dimension-differences. Thechoiceof h =4 andh = 9 allows
the expression v/hD i, in the elimination test (Eq. 3.45) to be evaluated using only additions,
once v/Dmin has been computed, since v/4D 1in = 2v/Dmin ad v/9D 1in = 3v/D min.

Fig. 3.5 illustrates the experimental results for the elimination probability of IAEI at each
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feature dimension for 16, 64, 256 and 1024 codewords, respectively. For 1024 codewords,
92.7% of impossible codewords matches will be eliminated by using the IAEI criterion in the
first dimension. Only 0.65% of codewords cannot be eliminated using the IAEI criterion. The
numbers of eliminations at each dimension for 8, 32, 128 and 512 codewords are shown in
Table 3.1. No codeword can be eliminated in the second or fifth dimension and only a few
codewords are eliminated in the tenth dimension because the bounds of the IAEI criterion are
separated intofour sectionsand hissetto 1, 4, 9and 13. If hissettoi at the ith dimension, then
significant multiplication overhead is needed in the computation of /hD ;.. The statistics of
the elimination probability for LAEI criterion at each feature dimensionfor 16, 64, 256 and 1024
codewords, respectively, isdepictedin Fig. 3.6 whereh isset to i at the ith dimension. Table 3.2
showsthe number of eliminationsat each dimensionfor 8, 32, 128 and 512 codewords, where h
isalso set to i at the ith dimension. The elimination efficiency for h set to i at the ith dimension
is better than h set to 1, 4, 9 and 13 but significant multiplication overhead is needed if h is set
to1i at the ith dimension. Experimental datarelating to computational complexity are depicted

number of codewords
dimension 8 32 128 512
1 36,876 | 336,053 | 1,911,039 | 9,023,539
2 0 0 0 0
3 3450 | 13,445 34,107 73,228
4 13,800 | 46,887 | 112,603 228,730
5 0 0 0 0
6 1,057 5,866 14,536 32,387
7 4530 | 20,270 53,834 122,545
8 9,355 | 32,694 81,887 175,040
9 13,071 | 36,575 86,146 172,657
10 181 1,074 3,507 7,646
11 3,865 | 12,788 34,829 71,259
12 8,355 | 21,331 50,946 99,451
13 10,533 | 26,944 56,529 94,848

Table 3.1: Number of eliminations at each dimension (h issetto 1, 4, 9 and 13)

in Tables 3.3, 3.4, 3.5 3.6, 3.7, 3.8, 39and 3.10. Table 3.10 shows that this new fast
codeword search agorithm saves more than 77% and 21% multiplication operations compared
with the minimax method and the minimax method with AEI criterion respectively for 1,024

codewords. Although several digital signal processing chips exist that can implement addition

57



number of codewords
dimension 8 32 128 512
1 36,876 | 336,053 | 1,911,039 | 9,023,539
2 9,025 | 32,074 75,067 154,884
3 7,246 | 21,708 49,707 99,302
4 5364 | 19,394 48,129 97,968
5 4521 | 16,657 42,762 94,449
6 5605 | 19,125 47,840 102,112
7 4731 | 18,720 48,622 106,165
8 5035 | 17,731 44,523 94,010
9 6,486 | 17,634 41,062 81,403
10 5831 | 15,699 38,525 75,705
11 5,299 | 14,786 35,937 68,688
12 5,245 | 12,760 30,023 56,990
13 5,446 | 14,530 31,330 52,575

Table 3.2: Number of eliminationsat each dimension (h is set to i for the ith dimension)

and multiplication in approximately the same time, multipliers take up much larger chip areas
than adders. Also since the multiplication operation is more expensive than the comparison and
addition operations for genera processors (Leibson, 1993), this new fast algorithm is better

than the other two agorithms.

Thisfast algorithmisimplemented by using the TAEI, setting h to 1, 4, 9 and 13, adapting and
comparing Eq. 3.45 for s from 1 to 13. Another possible approach isto adapt s from 1 to 13
but only compare Eq. 3.45 at s = 1, 4, 9 and 13. As shown in Table 3.11, this approach will
decrease the number of comparisons as well as the total number of operations at the expense of
more additions. In terms of the total number of mathematical operations, thisapproach isalittle
better than the minimax method but drastically reduces the number of multiplicationsfor 1024

codewords.

A fast codeword search algorithm must include two key elements. a good tentative matching
approach and a powerful elimination criterion. The IAEI is a powerful elimination criterion.
An efficient algorithm can therefore be implemented by combining IAEI with another tentative
matching approach, such as the previous vector candidate (Pan, 1988; Pan et al., 1996¢; Chen
& Pan, 1989).
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method mul.(x10°%) | cmp.(x10%) | add.(x10%) | sum(x 10%)
Minimax 1.023 2,833 2,973 6,829
Minimax_AEI 721 3,675 3,815 8,211
IAEI_Euclidean 700 3,480 3,679 7,859

Table 3.3: Computational complexity of codeword search for 8 codewords on Euclidean metric

method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 1,575 5,535 5,515 12,625
Minimax_AEI 985 7,084 7,064 15,133
IAEl_Euclidean 932 6,662 6,708 14,302

Table 3.4: Computational complexity of codeword search for 16 codewords on Euclidean metric

3.3 Improvement in Partial Distortion Search

The PDS algorithm (Bel & Gray, 1985) has been shown to be an efficient and simple codeword
search algorithm. This method is always used in the last stage when the other elimination
criterion cannot delete impossible codeword matching. As shown previously in section 3.1,
subsection 3.1.1, thisreducesto (k — s) multiplicationsand 2(k — s) additions at the expense of
s comparisons. Thisalgorithmissuitablefor computer architecturesin which the complexity of
comparisonsis negligible with respect to that of multiplications. However, PDS isless suited to
processor architectures in which comparisons are computationally expensive. An improvement
of the partial distortion search agorithm using dynamic programming (D P) procedure (Fissore
et al., 1993) is called DPPDS. Here a new improved PDS method (Pan et al., 1994b) is
proposed by determining which dimension is suitable to start inserting comparisons for every

codeword assessed from the training data.

Let r be the cost ratio of the comparison computation time to dimension-distortion computation

method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 2,037 10,390 10,049 22,476
Minimax_AEI 1,130 12,673 12,332 26,135
IAEI_Euclidean 1,045 11,921 11,650 24,616
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method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 2,865 20,035 19,053 41,953
Minimax_AEI 1,400 23,581 22,600 47,581
IAEI_Euclidean 1,256 22,262 21,353 44,871

Table 3.6: Computational complexity of codeword search for 64 codewords on Euclidean metric

method mul.(x10°%) | cmp.(x10%) | add.(x10%) | sum(x 10%)
Minimax 3,827 38,750 36,487 79,064
Minimax_AEIL 1,644 43,926 41,663 87,233
IAEI_Euclidean 1,422 41,765 39,577 82,764

Table 3.7: Computational complexity of codeword search for 128 codewords on Euclidean
metric

time. The improved partial distortion search (improved PDS) algorithm can be described as

follows:
Step 11 Setl=1.
Step 2 Seti=1and dpin = 0.

Step 3: Calculate the distortion d for the ith codeword to the lth training vector. Compute the
saving dimension-distortion number M}, and the induced comparison number C}, at the

insertion from the jth dimension for the ith codeword. Set d i, = Min(din, d).
Step 4: Ifi< N, seti=1+1andgotostep 3. Here N isthe number of codewords.

Step5: If L < T,setL=1+1 and go to step 2; otherwise, set ¢} = T~' Y, C} and m! =
T-'y L Mi. Herel=1to T and T is the number of training vectors. The comparison

starts from I(i) for the ith codeword if I(i) = argMax;(m} — rc}).

Table 3.8: Computational complexity of codeword search for 256 codewords on Euclidean

metric

method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 5,088 75,640 70,813 151,541
Minimax_AEI 1,901 83,135 78,308 163,344
IAEI_Euclidean 1,584 79,700 74,949 156,233
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method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 6,492 148,517 138,562 293,571
Minimax_AEI 2,115 158,799 148,844 309,758
IAEl_Euclidean 1,708 153,730 143,852 299,290

Table 3.9: Computational complexity of codeword search for 512 codewords on Euclidean
metric

method mul.(x10%) | cmp.(x10%) | add.(x10%) | sum(x10°%)
Minimax 7,569 292,892 272,682 573,143
Minimax_AEI 2,133 305,783 285,573 593,489
IAEl_Euclidean 1,671 299,002 278,865 579,538

Table 3.10: Computational complexity of codeword search for 1024 codewords on Euclidean
metric

A more efficient algorithm can be developed by combining thisimproved PDS a gorithm with
the dynamic programming in the PDS method. It isreferred to as improved DPPDS. The
difference between the improved DPPDS and the DPPDS agorithm (Fissore et al., 1993)
is that in the improved algorithm the dimensions at which comparisons are performed are
determined separately for each codeword instead of being the same for al the codewords.
Assume S} is the number of successful comparisons for the ith codeword at position j for T
data vectors. Hence the number of dimension-distortion computationsfor inserting comparison

operationsin positionj for the ith codeword can be expressed as

NaG, %) =Tj+ (T = S;)(k =), (3.49)
codeword no. | mul.(x10%) | cmp.(x10°%) | add.(x10%) | sum(x10%)
8 700 2,796 3,720 7,216
16 932 5,443 6,795 13,170
32 1,045 10,221 11,805 23,071
64 1,256 19,711 21,613 42,580
128 1,422 38,205 39,975 79,602
256 1,584 74,784 75,548 151,916
512 1,708 147,301 144,707 293,716
1024 1,671 291,360 279,969 573,000

Table 3.11: Computational complexity for comparisoninserted only in s =1, 4, 9 and 13
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where k isthe number of dimensions, i=1,2,...,N, N isthe number of codewords.

If the previous comparison is performed in position j, the number of dimension-distortion

computationsfor inserting comparisonsin position t for the ith codeword is as follows:

N4G, 1) = Tj+ (T = St — ) + (T = SP(k — t). (3.50)

The computational advantage for the ith codeword is

VG, 1) = [NG, k) = NGG, ] = 7(T = S) = (S, = $5)(k — ) = 7(T = S)). (3.51)

The dynamic programming technique and Eq. 3.51 are applied to Eq. 3.52, i.e., find suitable

inserting positionsj to maximize Eq. 3.52.

A'(t) = A'G) + VG, 1), (3.52)

wheret=1,2,...,k,j < t.

The speech databases used intraining and test experiments consist of onehundred wordsrecorded
from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-
dimensional cepstrum coefficients are computed over 20 ms-wideframeswith a5 msframe shift.
The first data set recorded from two speakers is used to generate the codebook. The inserting
dimension of comparison to every codeword for the improved PDS a gorithm is computed from
the codebook using the second data set recorded from two other speakers. The third data set
recorded from the fifth speaker is used to test the performance of these approaches.

The 12-dimensional cepstrum coefficients with variance weighting and 256 codewords are used
in the experiment of PDS, improved PDS, improved DPPDS and dynamic programming in
PDS referred as DPPDS. The purpose of variance weighting is to equalize the importance of
every cepstrum coefficient. The experimental resultsare shown in Table 3.12. The performance
is compared with the standard PDS. These results show that the performance of the improved
PDS is amost the same as using DP to improve the performance of PDS. Genera speaking, if
the cost ratio of the computer architecture defined as the comparison computation time divided

by the dimension distortion computation time is smaller or equal to 1.2, it is better to use the
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improved PDS than DP in PDS for the cepstrum coefficients with variance weighting. The
improved DPPDS is superior to the other algorithms.

costratio | DPinPDS | improved PDS | improved DPPDS
0.1 0% 0.82 % 0.95%
0.2 05% 22% 4.6%
0.3 29% 4.0 % 5.5%
0.4 57% 5.8 % 8.2%
0.5 7.9 % 7.9% 10.9%
0.6 10.1 % 10.0 % 13.3%
0.7 12.4 % 121% 15.7%
0.8 14.5 % 142 % 17.8%
0.9 16.3 % 16.1% 19.7%
1.0 17.3% 18.1% 21.7%
11 19.1% 19.8 % 23.5%
12 20.8 % 215% 25.2%
13 245 % 231% 26.7%
14 26.2% 24.6 % 27.8%
15 271.7% 26.0% 29.2%
16 29.1% 273% 31.0%
17 30.4 % 28.6 % 32.3%
18 31.6 % 29.7 % 33.6%
19 32.7% 30.9% 34.8%
20 33.8% 31.7% 35.9%
25 38.1% 36.8% 40.7%
3.0 42.6 % 40.5 % 44.5%
35 45.9 % 44.5% 47.5%
4.0 48.5 % 47.9 % 49.9%
4.5 50.6 % 50.7% 52.0%

Table 3.12: The performance of DP in PDS, improved PDS and improved DPPDS (percentage
improvement on standard PDS)

3.4 Improvement in Extended Partial Distortion Search

The extended partial distortion search (EPDS) agorithm (Chen & Pan, 1989; Pan, 1988) is
a modified version of PDS which optimizes the calculation in terms of the number of multi-
plications for a minor overhead in data sorting. It can be used in vector encoding and word
recognition. The EPDS algorithm for the frame-distortion accumulation in word recognition is

stated as follows;
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Step 1: Let [; = 1 and calculate the distortion Df; between the first feature frame X; and the
jth codebook, for j = 1to V. Here V isthe number of codebooksand L; isthe L;th frame
for the jth codebook.

Step 2. Find Dfs = Mln]Df] and s = CLT‘gMiTL]'Df]‘.

Step 3: If Ly = T, then set the sth codebook to be the best match and terminate the program;
otherwise, set L = L + 1, calculate the encoding distortion of X;, frame by using the sth
codebook and add it to Df, and go to step 2. Here T isthe number of frames.

Assume arecognition system including 10 words (10 codebooks) and one test word including 9
frames. Asshown in Table 3.13, Cb; is the ith codebook (word) and f; is the ith frame of the
test word. The value of each entry is the accumulated frame-distortionsfor the codebook. The
underline used in thisexample meansthelast cal cul ated frame-distortion for the corresponding
codebook. Thecalculation of many frame-distortionscan beomitted. HencetheEPDS algorithm

is very suitable for word recognition. For vector encoding, this computes the dimension-

Cby | Cby | Cbs | Cby | Cbs | Cbg | Cby | Cbg | Cbo | Chyp
fi 8 7 9 6 5 11 2 2 4 5
f,| 15 | 15 | 14 | 12 | 18 | 17 3 6 8 10
fs | 22 | 24 | 25 | 17 | 27 | 22 6 11 | 12 11
fa | 25 | 35| 29 | 22 | 32 | 28 9 17 | 18 21
fs| 26 | 36 | 32 | 28 | 35 | 32 | 13 | 19 | 26 23
fe | 30 | 44 | 34 | 37 | 39 | 38 | 17 | 25 | 28 31
f,| 36 | 47 | 38 | 39 | 42 | 40 | 19 | 26 | 31 33
fs | 38 | 53 | 41 | 43 | 47 | 44 | 20 | 27 | 33 35
fo | 39 | 58 | 43 | 46 | 51 | 47 | 23 | 29 | 36 38

Table 3.13: Diagram of distortion calculation for EPDS in word recognition

distortion for the first dimension of the input vector to the first dimension of all codewords,
then sorts the dimension-distortion to obtain the nearest codeword. The distortion for the input
vector to the nearest codeword in the second dimension is cal culated and added to the previous
distortion of the same codeword. The dimension-distortions are sorted again to obtain the
nearest codeword. The procedure continues until the last dimension-distortion is cal culated and

the distortion is smallest.

Assume the number of dimensions and the number of codewords are 10 and 8, respectively.
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Table 3.14 illustrates an example of EPDS algorithm in vector encoding. The value of each
entry is the accumulated dimension-distortionsfor the codeword. The underline used in this
example means the last calculated dimension-distortion for the corresponding codeword. The
calculation of many dimension-distortions can be omitted. The EPDS algorithm is an optimal
PDS algorithm in the sense of reducing the number of multiplications. The detailed algorithm

of the EPDS in vector encoding is described as follows:

Step 1: Let 1; = 1 and calculate the distortion D; = (x; — c¢;;)? between the first dimension x;
of the input vector X and the first dimension c;; of the ith codeword C;, for i = 1 to N.

Here N isthe number of codewords and 1; isthe 1;th dimension for the ith codeword.
Step 2. Find DS = MITLIDI and s = CLT‘gMiTLiDi.

Step 3: If 1 = k, then set the sth codeword to be the best match and terminate the program;
otherwise, set |y = 1, + 1, calculate the encoding distortion of x,, by using the sth
codeword and add it to D, and go to step 2. Here k is the dimension of the input vector

and codewords.

C | C |G |G| G5 | Ce| GGy
x| 2 (32|15 |4|8]7
x| 6514 |2|8 |7 |12]12
x;3 | 7|9 (11| 4 |12| 9 |15 ]| 16
xg | 9 (111135 |16|13|18 |19
x5 |14 (13 18| 6 |18 |14 |21 | 22
x¢ |17 15121 | 8 |20 |16 |25 |23

x; [ 1816|2210 |21 |17 |27 | 24
xg |20 |17 | 25|11 |23 |18 | 28 | 27
Xo | 22|18 28|12 |24 |20 |30 |29
X100 231930 |14|26|21 |35 |32

Table 3.14: Diagram of distortion calculation for EPDS in vector encoding

The EPDS algorithm is suitable for computer architectures in which the complexity of com-
parisons is negligible with respect to that of the multiplications, such as Intel 80486 processor.
However, EPDS isless suited to some DSP processors, such asthe TM S320 series of processors
in which comparisons are computationally expensive. An improvement of the extended partial

distortion search approach is proposed here. It involves inserting the sorting operation from
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a suitable dimension to minimize the EPDS search cost for any computer architecture. Here
sorting means that the comparisons are performed to find the codeword which has the minimum

distortion at the present stage.

In thisimproved agorithm, the sorting of the accumulated distortionsto find the minimum D
is performed only after thefirst j dimensions' distortion terms have been accumulated for every
codeword, wherej ischosen to minimizethetotal computation. Let r bethe cost ratio of the sort-
ing timeto dimension-distortion computation time. To insert the sorting to dimension-distortion

accumulation at the jth dimension, the cost of sortingism ;r, but there isa decrease of N — m;
dimension-distortion computations. Here N is the number of codewords and m; is the average
number of codewords whose distortion computation cannot be omitted at the sorting insertion

of the jth dimension. From the above description, the following two equations are satisfied.

mi>1, j=1,. k-1 (3.53)

my ij.;.], j=1,...,k—2 (354)

Let A(j) betheglobal advantage function of inserting the sorting from the jth dimension onwards.

The advantage can be expressed interms of N, k, m; and r as follows.

Ak) =0 (3.55)

AG) =AG+D)+V(E), §=1,. k-1 (3.56)

where V (j) isthe local advantage due to sorting at the jth dimension, given by

VGE)=(N-m;) —myr =N — (r+1)m, (3.57)

From Eq. 3.54 and 3.57,

V(i) > V(E) if 1> (3.58)

Hencethereissomet (1 < t < k) such that
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VE) >0 for j=t,.. k-1 (3.59)

VE) <0 for j=1,..,t—1 (3.60)

and so
Al) > AG), §=1,...,k, t#j (3.61)

Thisvauet isthe optimal sorting insertion dimension for the given value of the cost ratio r.

From Eq. 3.57, 3.59 and 3.60, the cost interval v, corresponding to the sorting insertion

dimension t can be derived.

0<T < — 1, t=1 (3.62)

N
1<t < — 1, t=2,.., k-1 (3.63)
m

From the training data, calculate the cost interval r;, j =1to k — 1. The optimal sorting insertion
is from the jth dimension if the cost ratio of the computer architecture liesin the cost interval
1. For the conventional exhaustive full search method, Nk dimension-distortionsare computed
corresponding to the computation time of Nk multiplications, N(2k — 1) additions, and (N — 1)
comparisons. One dimension-distortion computation involves approximately the computation
time of one multiplication and two additions. The sorting timeis N — 1 comparisons for the
basic sorting method. The computation time of EPDS and improved EPDS are Nk — A(1) and
Nk — A(t). The performance of EPDS, improved EPDS, and the improvements of theimproved

EPDS are as follows.

Nk — A(1)

EPDS f = 3.64
performance NK (3.64)
Nk — A(t
Improved EPDS performance = T() (3.65)
A(t) — A(1
Improvement = N(k)—iA((D) (3.66)

67



The speech databases used intraining and test experiments consist of onehundred wordsrecorded
from five male speakers separated into three sets. The sampling rate used is 16 kHz and 12-
dimensional cepstrum coefficients are computed over 20 ms-wide frames with a 5 ms frame
shift. The first data set recorded from two speakers is used to generate the codebook. Cost
intervals for the improved EPDS algorithm are computed from the codebook using the second
data set recorded from two other speakers. The third data set recorded from the fifth speaker is

used to test the performance of these approaches.

Table 3.15 illustrates cost intervals of 16 codewords and 128 codewords. From these cost
intervals and the cost ratio of sorting time to dimension-distortion computation time for a given
computer architecture, the dimension of sorting insertion can be decided. For example, the
inserting should be from the third dimension if the cost ratio of the computer architecture is 6
for 128 codewords. The performance comparison of improved EPDS and EPDS is shown in
Table 3.16 and Table 3.17. These efficiencies can be calculated from Eq. 3.64, 3.65and 3.64
by using the maximum cost ratio from Table 3.15. For 128 codewords, if the cost ratio is 7.55,
the performance of EPDS is 67%, but that of improved EPDS will be 50% for inserting from
the third dimension, it improves 26%. This technique can aso be applied to frame-distortion

accumulation in aword recognition system.

inserting | costintervalsof | costintervalsof 128
dimension | 16 codewords 128 codewords
1 [0.00, 1.56] [0.00, 2.03]
2 [1.56, 3.29] [2.03, 4.99]
3 [3.29,4.32] [4.99, 7.55]
4 [4.32,6.12] [7.55, 13.4]
5 [6.12,7.43] [13.4,19.5]
6 [7.43,8.92] [19.5, 29.3]
7 [8.92,10.1] [29.3, 39.0]
8 [10.1, 11.6] [39.0, 52.9]
9 [11.6, 12.6] [52.9, 67.7]
10 [12.6, 13.4] [67.7,84.2]
11 [13.4,14.3] [84.2, 104]
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inserting EPDS improved EPDS | improvement
dimension | performance | performance
1 41 % 41 % 0%
2 63 % 58 % 8%
3 76 % 66 % 13%
4 99 % 77% 22%
5 116 % 84 % 28%
6 135% 90 % 34%
7 150 % 93 % 38%
8 170 % 97 % 43 %
9 182 % 98 % 46 %
10 192 % 99 % 48 %
11 203 % 100 % 51 %

Table 3.16: The performance of 16 codewords

inserting EPDS improved EPDS | improvement
dimension | performance | performance
1 29 % 29 % 0%
2 49 % 42 % 15%
3 67 % 50 % 26 %
4 107 % 60 % 44 %
5 148 % 68 % 54 %
6 215 % 78 % 64 %
7 281 % 84 % 70 %
8 376 % 90 % 76 %
9 478 % 95 % 80 %
10 590 % 98 % 83%
11 724 % 100 % 86 %

Table 3.17: The performance of 128 codewords

3.5 Fast Algorithm for Approximate Search

Multiplication operations are far more expensive compared with comparison and addition oper-
ations for general processors (Leibson, 1993). In this section, an efficient approximate search
algorithm which can dramatically reduce the number of multiplication operationsis presented.
This algorithm is based on the modification of the Chebyshev metric or Manhattan metric.
Assume the training data and codewords are X, = {x],x3,...,x5} and C; = {c{,¢c{, ..., c},

respectively, p = 1,2,...,T,1 =1,2,..,N. T, k and N are the total number of training data
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vectors, the number of dimensions and the number of codewords, respectively. The distortion

between data vector X,,, and codeword C; can be expressed as follows:
k .
dL,p) =) (<, — ¢
j=1
The codeword with the minimum value of the maximum dimension-distortionis
n, = argminimaxj|x}, — cll,
and

d(ny,p) =) (X, — )’

j=1

Separate all codewords C; into two sets for every training data vectors X,,.

First set: A, ={ild(,p) > d(n,,p)}.

Second set: B, = {ild(i,p) < d(n,,p)}.

Cadlculate the parameter rate using Eq. 3.67 and 3.68

maxgep, max;|c] — x|

maxs|cn, — %

rate, =

for each training data vector X,.

rate = max,rate, + 9.

(3.67)

(3.68)

where 4 is a small value. After the parameter rate is obtained, a new codeword elimination

criterion is devel oped as follows:

i dx) — f Jxd ol
if max;j|x;, — ¢ > rate.maxi|x;, — ¢, |,

k k
then Z(X’Tn — ) > Z(X]m -
=1 j=1

where n, = argmin;max;|x),, — cl|.
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method mul. cmp. add. sum average distortion
minimax | 502,231 | 3,376,691 | 3,587,363 | 7,466,285 0.940086
rate_1.0 0 3,099,888 | 3,129,984 | 6,229,872 0.959554
rate.1.1 | 97,216 | 3,332,328 | 3,189,985 | 6,619,529 0.945844
rate.1.2 | 142,396 | 3,345,996 | 3,230,290 | 6,718,682 0.941630
rate.1.3 | 178,404 | 3,355,566 | 3,262,337 | 6,796,307 0.940600
rate.1.4 | 209,539 | 3,362,509 | 3,289,937 | 6,861,985 0.940210
rate.1.5 | 237,772 | 3,367,516 | 3,314,977 | 6,920,265 0.940139
rate.1.6 | 262,278 | 3,371,061 | 3,336,813 | 6,970,152 0.940096
rate.1.7 | 282,651 | 3,373,216 | 3,355,062 | 7,010,929 0.940093
rate.1.8 | 301,284 | 3,374,809 | 3,371,852 | 7,047,945 0.940088
rate.1.9 | 316,990 | 3,375,730 | 3,386,098 | 7,078,818 0.940086
rate.2.0 | 330,482 | 3,376,189 | 3,398,439 | 7,105,110 0.940086
rate.2.1 | 341,306 | 3,376,384 | 3,408,397 | 7,126,087 0.940086
rate.2.2 | 352,263 | 3,376,497 | 3,418,520 | 7,147,280 0.940086
rate.2.3 | 361,709 | 3,376,520 | 3,427,279 | 7,165,508 0.940086
rate.2.4 | 370,395 | 3,376,539 | 3,435,332 | 7,182,266 0.940086
rate.2.5 | 378,380 | 3,376,542 | 3,442,745 | 7,197,667 0.940086

Table 3.18: Performance comparison of minimax method and fast approximate algorithm for 8
codewords

The efficiency of the codeword search depends on the value of the parameter rate. The smaller
valuetherate s, the more efficient thisalgorithm gets. Inthe extreme, rate =1, itisChebyshev
metric or Manhattan metric. For this metric, the number of multiplications, comparisons and
additionsare 0, N.(k — 1) + (N — 1) and N .k, respectively. Parameter rate can be reduced
to asmaller value if the increased distortion is small. The test materials for these experiments
consisted of two hundred words recorded from two male speakers. The speech was sampled
a arate of 16 kHz and 13-dimensional cepstrum coefficients were computed over 20 ms-wide
frames with a5 msframe shift. A total of 20,030 analyzed frames used as the training datawere
recorded from one male speaker. The test data includes 30,096 analyzed frames recorded from
the other speaker. Codebooks of size 8, 256 and 1,024 codewords with Euclidean distortion

measure are used in these experiments.

Tables 3.18, 3.19 and 3.20 illustrate the performance of the minimax method and this new
efficient approximate search algorithm with different rate. The training rates are 1.874833,
2.028345 and 2.231797 for 8, 256 and 1024 codewords, respectively. Here 5 isset to 0. The

average distortion is the same as the minimax method if the training ratesare used. Obvioudly,
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method mul. cmp. add. sum average distortion
minimax | 2,710,965 | 109,599,202 | 102,346,066 | 214,656,233 0.346460
rate_1.0 0 100,129,392 | 100,159,488 | 200,288,880 0.388426
rate.1.1 | 428,683 | 107,992,358 | 10,0517,026 | 208,938,067 0.364018
rate.1.2 | 770,084 | 108,202,247 | 10,0818,487 | 209,790,818 0.353663
rate.1.3 | 1,087,047 | 108,424,879 | 101,091,793 | 210,603,719 0.349195
rate.1.4 | 1,388,239 | 108,647,096 | 101,344,105 | 211,379,440 0.347424
rate.1.5 | 1,675,786 | 108,862,034 | 101,576,736 | 212,114,556 0.346771
rate.1.6 | 1,932,988 | 109,051,837 | 101,777,160 | 212,761,985 0.346557
rate 1.7 | 2,157,441 | 109,213,439 | 101,945,392 | 213,316,272 0.346482
rate.1.8 | 2,337,348 | 109,338,814 | 102,075,174 | 213,751,336 0.346468
rate.1.9 | 2,471,616 | 109,429,695 | 102,168,902 | 214,070,213 0.346461
rate.2.0 | 2,563,560 | 109,490,166 | 102,231,336 | 214,285,062 0.346460
rate.2.1 | 2,619,365 | 109,525,849 | 102,268,176 | 214,413,390 0.346460
rate.2.2 | 2,650,193 | 109,544,662 | 102,288,120 | 214,482,975 0.346460
rate.2.3 | 2,665,490 | 109,553,760 | 102,297,907 | 214,517,157 0.346460
rate 2.4 | 2,672,197 | 109,557,447 | 102,302,218 | 214,531,862 0.346460
rate.2.5 | 2,674,831 | 109,558,755 | 102,303,955 | 214,537,541 0.346460

Table 3.19: Performance comparison of minimax method and fast approximate algorithm for
256 codewords

the parameter rate can be set to a small value if the codebook size is small. For 8 codewords,
the number of multiplicationswill be reduced by 80% with only 0.6% increased distortion if the

rateis 1.1

3.6 Efficient Search Algorithm for Image Coding

The mean-distance-ordered search (MPS) algorithm (Ra & Kim, 1993) takes advantage of the
fact that the nearest codeword is usually in the neighbourhood of the minimum squared mean

distance. The basic inequality of this approach isasfollows:

k

if |in—i

i=1 i=1

cil > VKD pin, (3.71)

k
then Z(xi — ¢})? > Diin.
=1

This means C; will not be the nearest neighbour to X if Eq. 3.71 issatisfied. Inthe MPS algo-

rithm, the sum of all dimensionsfor each codeword is calculated first and these values are sorted
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method mul. cmp. add. sum average distortion
minimax | 6,457,314 | 436,016,497 | 405,649,633 | 848,123,444 0.271357
rate_1.0 0 400,607,856 | 400,637,952 | 801,245,808 0.310621
rate 1.1 | 577,887 | 431,680,772 | 401,129,451 | 833,388,110 0.288017
rate.1.2 | 1,110,517 | 432,055,772 | 401,599,403 | 834,765,692 0.278229
rate.1.3 | 1,684,421 | 432,507,813 | 402,095,215 | 836,287,449 0.274065
rate.1.4 | 2,307,142 | 433,010,905 | 402,619,302 | 837,937,349 0.272393
rate.1.5 | 2,960,568 | 433,533,163 | 403,152,623 | 839,646,354 0.271760
rate.1.6 | 3,620,279 | 434,047,396 | 403,672,576 | 841,340,251 0.271497
rate 1.7 | 4,255,817 | 434,526,434 | 404,154,916 | 842,937,167 0.271393
rate.1.8 | 4,827,987 | 434,942,906 | 404,573,078 | 844,343,971 0.271366
rate.1.9 | 5,301,655 | 435,275,810 | 404,907,048 | 845,484,513 0.271360
rate.2.0 | 5,654,318 | 435,515,429 | 405,147,304 | 846,317,051 0.271360
rate.2.1 | 5,890,136 | 435,671,173 | 405,303,503 | 846,864,812 0.271360
rate.2.2 | 6,031,703 | 435,762,281 | 405,394,910 | 847,188,894 0.271360
rate.2.3 | 6,106,298 | 435,808,957 | 405,441,729 | 847,356,984 0.271360
rate.2.4 | 6,139,254 | 435,829,116 | 405,461,953 | 847,430,323 0.271360
rate.2.5 | 6,152,092 | 435,836,743 | 405,469,710 | 847,458,545 0.271360

Table 3.20: Performance comparison of minimax method and fast approximate algorithm for
1024 codewords

in the increasing or decreasing order. In the encoding stage, the sum of all dimensions of the
data vector is computed and one codeword called the tentative matching codeword required for
the minimization of the left hand side of Eq. 3.71, mean distortion (M D), isfound. The squared
Euclidean distortion between the data vector and this tentative matching codeword referred to
hereasD...;, iscalculated. Then Eq. 3.71 isapplied to eliminateimpossible codeword matching.
Codewords C; for which 3, ¢t > ¥ x' + KDpiw 0F 1, €8 < 35 % — /KD i €N

be eliminated. Otherwise, the PDS isapplied to calculate the distortion and update D ..i,.

The efficiency of the MLPS agorithm depends on the distortion of the tentative matching code-
word. If the distortion of the tentative matching codeword is small, then the MPS algorithm
isvery efficient. Unfortunately, some data vectors may have small mean distortion (M.D) but
the squared Euclidean distortion is significant, such as one data vector (200, 200, 0, 0) and one
codeword (0, 0, 200, 200). In order to improve performance, a new agorithm is proposed from

the extension of the bound for Minkowski metric (Pan et al., 1996b). Thisbound isasfollows:
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S

if > K=l > Y/h¥ 'Doin (3.72)

i=1
k
then > =" > Do (3.73)
i=1
wheres < h <kandp < n.

This is an improved absolute error inequality (IAEI) criterion (Pan et al., 1996b) by setting

n =2andp = 1. Hencethe IAEI criterion is expressed asfollows:

if > ' —cll > VADpin, (3.74)
=1
k
then Z(xi — ¢})* > Dinin, (3.75)
=

wheres < h < k.

S

Because i xt—ci| > | i x' — Z cil, (3.76)
i=1 i=1

i=1

hence a new inequality is derived as follows:

if 1Y x> ¢l = VADwin, (3.77)
i=1 i=1
k
then Z(xi - C})2 > Dmin,
i=1

wheres < h < k.

This new inequality (Eq. 3.77) is the generaized form of the the basic inequality (Eqg. 3.71)
of the MPS algorithm. By using this new inequality, the codeword can be separated into two
vectors. Thefirst vector iscomposed of thefirst half of the elements, the other elements belong
to the second vector. Using these two separated vectors, the sum of the elements for these
separated codewords can be calculated first. Therefore Eqg. 3.77 can be applied to eliminate
impossible codeword matching for these two separated vectors. Because the sum of thefirst part

is considered as well as the sum of the second part, this approach overcomes the inefficiency
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of the unsuitable tentative matching codeword using mean distortion (MD). By combining the
MPS agorithmwith Eq. 3.77 for the separated codewords, the improved algorithmis computed

asfollows:

Step 1: FCode_sum; = Z;‘:/]z ¢/, SCode_sum, = Z;‘:%H c¢)and TCode_sum; = FCode_sum;+
SCode_sum; are calculated for each codeword, i =1, 2, ..., N, N isthe number of code-

words. A sorting list is computed according to the increasing order of the TCode sum;.

k/2
j=1

Step 2. FData_sum =) /"%, SData_sum = Z;‘:%H x)and TData_sum = FData_sum+

SData_sum are caculated.
Step 3: Calculatethetentative matching codewordiusing argMin;|TData_sum—TCode_sumy|.

Step 4: Calculate the squared Euclidean distortion D ,.,;, for the tentative matching codeword.
Set 1 to be the nearest uncalculated codeword to the tentative matching codeword in the

sorting list.

Step 5: Check the termination of this program. Test Eq. 3.71 for the neighbour codewordsin a
back-and-forth manner asin paper (Ra & Kim, 1993), if it is satisfied, delete impossible
codeword matching, set 1 to bethe nearest uncal cul ated codeword to the tentative matching
codeword in the sorting list and goto step 5; Otherwise, goto next step.

Step 6: If [FData_sum — FCode_sum,| > \/% or |SData_sum — SCode_sum,| >
\/ng , then eliminate this codeword; otherwise use the PDS to the codeword search
and update the D.;,. Set 1 to be the nearest uncalculated codeword to the tentative
matching codeword in the sorting list and goto step 5.

The training material for these experiments was a LENA image. It consists of 512 x 512 pels
with 8 bits/pel resolution. Codebook sizes of 64, 128, 256, 512 and 1024 are generated by the
well known LBG agorithm. The vector dimension k is16. An AIRPLANE image was used as
the test material. Experiments were carried out to test the performance of the MPS algorithm
and the proposed new agorithm. The performance is measured in terms of the number of
calculated distortions. As shown in Table 3.21, Table 3.22, Table 3.23, 3.24 and 3.25, the
new algorithm reduces 29%, 34%, 38%, 42% and 44% cal cul ated distortions compared with the
MPS agorithmfor 64, 128, 256, 512 and 1024 codewords, respectively. Interms of the number
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of multiplications, this new agorithm reduces 27.57 % compared with the MPS agorithm for
1024 codewords. In terms of the total number of operations, 10.81%, 13.31% and 14.94%
operations are reduced for 256, 512 and 1024 codewords, respectively. Actually, thisalgorithm
can be further improved by using IAET (Pan et al., 1996b) instead of PDS. Notethat (k +3)N
memory is needed for thisimproved algorithm compared with (k + 1)N memory for the MPS
algorithm. From the experiments, the performance of the proposed algorithm is significantly
better than the MPS algorithm. This improved algorithm can be extended by separating the

codevector into several sub-vectors.

method | mul. add. cmp. sum distortion no.
MPS | 938,360 | 2,068,161 | 820,387 | 3,826,908 69,088
New | 841,071 | 1,918,504 | 826,195 | 3,585,770 49,116

Table 3.21: Performance comparison of MPS and New algorithm for 64 codewords, M SE=168

method mul. add. cmp. sum distortion no.
MPS | 1,417,101 | 3,006,633 | 1,372,334 | 5,796,068 134,886
New | 1,203,841 | 2,721,519 | 1,373,637 | 5,298,997 89,061

Table 3.22: Performance comparison of MPS and New algorithm for 128 codewords, M SE=138

method mul. add. cmp. sum distortion no.
MPS | 2,236,464 | 4,626,455 | 2,323,753 | 9,186,672 259,460
New | 1,798,428 | 4,082,844 | 2,312,421 | 8,193,693 161,573

Table 3.23: Performance comparison of MPS and New algorithm for 256 codewords, MSE=115

3.7 Fast Search Algorithm for Quadratic Metric

In chapter 2, subsection 2.9.1, the bound for quadratic metric (Pan et al., 1996b) is derived.
Assume that

k
Dimin = DX, Cp) = (X = Cr)W™I(X = Cpo) = > [EL VY2, (3.78)

i=1
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If Z |EjVi| > VhD in, (3.79)
=1

whereE,, =X - C,,, W '=LL, L=[V,V,V5...Vi],and s < h < k.

For speech or image data, the classification result of the present vector is usualy the same as
or close to the classified result of the previous vector. The nearest codeword of the previous
vector can be used as the tentative match called previous vector candidate (Pan, 1988; Panet al.,
1996¢; Chen & Pan, 1989). A fast search algorithmfor the quadratic metricis proposed by using
the previous vector candidate as the tentative match, then the bound for quadratic metric
is applied to eliminate impossible codeword match. This fast search algorithm is depicted as

follows:

Step 1: Compute the nearest neighbour for the first frame X;. For the other frame X,,, use the
nearest neighbour of X;,_; (previous vector candidate) as a tentative match and so find the

initial value of D .
Step 2: For every codeword C;, calculate steps 3 to 7.
Step 3: For every dimension (i from 1 to k), calculate steps 4 to 6.
Step 4: Calculate the error vector component e;; = (x' — c}) and [EfVy| = ZL] e Lir.

Step 5: If Zim:] |E;Vi| > VRDmin, h > 1, then C; will not be the nearest neighbour to the

frame X, therefore go to step 3 for the next codeword.

Step 6: Calculate [E!V;|. If Zim:] [E}Vin]? > Digin, then C; will not be the nearest neighbour

to the frame X,,, therefore go to step 3 for the next codeword.

Step 7: If T 5 |EHVi)? < Doy S8t Dinin = Y5y [EFV,[? and record C; as the nesrest
neighbour to X,,.

The test materials for these experiments consisted of 99 words recorded from one male speaker.
The speech was sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients were

computed over 20 ms-wide frames with a 5 ms frame shift. The total number of frames is
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9,391. Codebooks with 256, 512 and 1,024 codewords with quadratic metric are used in these

experiments.

The conventional exhaustive method, the fast codeword search agorithm without tentative
match approach (i.e. with C; asthe tentative candidate) and the fast codeword search algorithm
with quadratic metric were tested in these experiments. The conventional exhaustive method is
referred to as “conventional”. The fast codeword search agorithm without tentative match
approach and the fast codeword search algorithm are referred to as “No — quadratic” and
“Pre — quadratic”, respectively. The bounds for quadratic metric are separated into four
sections(h =1,4,9,13).

The experimental resultsare shown in Tables3.26, 3.27 and 3.28. For 1,024 codewords, 91.6%
of the number of multiplications are saved, as well as considerable saving in the number of

additions. The increase in the number of comparisons is moderate.

A modified method can be appliedto previousfast algorithm by preprocessing C* L first, then XL
can be operated outside the loop of the codeword search. This modified method is more efficient
than previous one. Assumez,,; isthe element of thevector C: L, 1 <m <N, 1 <1i<k. The

modified algorithm is described as follows:

Step 1: Compute the nearest neighbour for the first frame X;. For the other frame X,,, use the
nearest neighbour of X;,_; (previous vector candidate) as a tentative match and so find the

initial value of D .
Step 2: Calculate X, 'L = (Y1, Yz, -, Yi)-
Step 3: For every codeword C;, calculate steps 3 to 7.
Step 4: For every dimension (i from 1 to k), calculate steps 4 to 6.
Step 5: Calculate [EXVi| = Y1, |y, — zj.

Step 6: If Zim:] |[EfVi| > VhDmin, h > 1, then C; will not be the nearest neighbour to the

frame X, therefore go to step 3 for the next codeword.

Step 7: Calculate [E}V;|2. If 3¢

m=1 |

EfV,|? > Doin, then C; will not be the nearest neighbour

to the frame X,,, therefore go to step 3 for the next codeword.
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Step 8: 1f Y5 [EfVi|? < Doniny S8t Dinin = 3oy [EEV,[? and record C; as the nearest
neighbour to X,,.

The same materials are used to test this modified method. Experimental results is shown in
Table 3.29. In terms of the total number of mathematic operations, the modified version can
reduce by more than 50 % computation complexity. No extra memory is needed if the same
matrix W is used throughout. Hence the original codewords need not be stored, but can be
replaced completely by the transformed codewords Ct L.
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Table 3.24: Performance comparison of MPS and New algorithm for 512 codewords, M SE=92

Table 3.25: Performance comparison of MPS and New algorithm for 1024 codewords, M SE=85

Table 3.26: Computational complexity of codeword search for 256 codewords on quadratic

metric

Table 3.27: Computational complexity of codeword search for 512 codewords on quadratic

metric

Table 3.28: Computational complexity of codeword search for 1024 codeword on quadratic

metric

method mul. add. cmp. sum distortion no.
MPS | 3,500,725 | 7,136,625 | 3,823,283 | 14,460,633 487,045
New | 2,644,173 | 6,118,165 | 3,773,868 | 12,536,206 281,031

method mul. add. cmp. sum distortion no.
MPS | 6,352,245 | 12,818,199 | 7,156,645 | 26,327,098 962,662
New | 4,600,745 | 10,770,471 | 7,022,970 | 22,394,186 544,073

method mul.(x10°%) | cmp.(x10%) | add.(x10%) | sum(x10%)
Conventional 437,545 2,395 435,141 875,081
No — quadratic 82,691 26,354 92,776 201,821
Pre — quadratic 50,685 18,630 57,003 126,318

method mul.(x10%) | cmp.(x10°%) | add.(x10°%) | sum(x10%)

Conventional 875,091 4,799 870,283 1,750,173
No — quadratic 142,364 47,619 160,012 349,995
Pre — quadratic 86,963 33,569 97,912 218,444

method mul.(x10°%) | cmp.(x10%) | add.(x10%) | sum(x10%)

Conventional 1,750,182 9,607 1,740,566 | 3,500,355
No — quadratic 246,729 86,226 277,687 610,642
Pre — quadratic 147,768 59,737 166,366 373,871

number of codewords | mul.(x10%) | cmp.(x10°) | add.(x10%) | sum(x10°)
256 10,926 18,630 27,957 57,513
512 18,837 33,569 49,433 101,839
1,024 32,555 59,737 86,882 179,174

Table 3.29: Computational complexity of modified method
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Chapter 4

Fast Clustering Algorithms

4.1 Introduction

Vector quantization (VQ) is a source coding procedure that can achieve improved data com-
pression ratios compared to linear approaches combined with a scalar quantizer such as
predictive coding or transform coding. The encoder of VQ encodes a given set of k-
dimensional data vectors X={X;|X; € R¥;j = 1,..., T} with a much smaller set of codewords
C={Ci|C; e R¥;i=1,...,N}(N « T). Only theindex i is sent to the decoder. The decoder has
the same codebook as the encoder, and decoding is operated by table look-up procedure. The

performance of data compression depends on a good codebook of representative vectors.

The LBG agorithm (Linde et al., 1980) isan efficient VQ clustering algorithm. Thisalgorithm
is based either on a known probabilistic model or on along training sequence of data. The main
idea of thisagorithm is the iterative application of a codebook modification operation where a
distortion measure D is used to compute the cost D (X, C;) of reproducing the data vector X; as
the codeword C;. Usualy the Euclidean distortion measure is used to compute the cost. The
iteration is terminated if the average distortion D(X, C) converges. The iterative procedure is

time consuming and it is difficult to apply the VQ clustering procedure for real time operation.

The computational complexity of the LBG algorithm can be significantly reduced if an efficient
codeword search algorithmisapplied to the partitioning of thedatavectors. Many fast algorithms
have been proposed to increase the speed of codeword search. Fischer and Patrick (Fischer &

Patrick, 1970) presented a preprocessing algorithm to reorder the design sample such that alarge
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number of distance computations could be eliminated. Fukunaga and Narendra (Fukunaga &
Narendra, 1975) proposed a branch and bound (BAB) agorithm for computing some nearest
neighbours. BAB agorithm is a tree search algorithm using a hierarchical decomposition of
the sample set of known patterns. They used the criterion of triangular inequality elimination
to develop two rules to eliminate the distance computation in the tree classifier. Kamgar-Parsi
and Kanal (Kamgar-Parsi & Kanal, 1985) added another two rules to the BAB agorithm to
improve the computation time. Niemann and Goppert (Niemann & Goppert, 1988) combined
these four rules into one and used a hierarchical partition of pattern sample agorithm to get
more efficient computation time. Jiang and Zhang (Jiang & Zhang, 1993) developed a more
efficient BAB tree search algorithm for finding the nearest neighbour to a new data vector in the
codebook. All these efficient search methods described above are however not suitableto apply

to VQ clustering agorithms due to the overhead of preprocessing required.

Bei and Gray (Bei & Gray, 1985) proposed the partia distortion search (PDS) algorithmto re-
duce computational complexity. PDS isasimple and efficient codeword search algorithm which
has no extra storage or preprocessing requirements. The minimax method was proposed by
Cheng et al. to derive atentative match and improve the search efficiency (Cheng et al., 1984).
Vidal (Vidal, 1986) presented the approximating and eliminating search algorithm (AESA) in
which the computation time is approximately constant for codeword search in alarge codebook
size. AESA isavery efficient algorithm to reduce multiplication operations for large codebook
Size but it needs a large number of comparison operations. Soleymoni and Morgera (Soley-
mani & Morgera, 1987b) proposed the absolute error inequality (AEI) elimination criterion to
improve the speed of VQ search. Chen and Pan (Chen & Pan, 1989) applied the triangular
inequality elimination (TIE) on VQ-based recognition of isolated words taking advantage of the
high correlation characteristics between data vectors of adjacent speech frames. In this chapter,
several fast clustering approaches based onthe LBG algorithm (Lindeet al., 1980) are presented

and compared.



4.2 Experimental Materials

The cepstrum of a signal is defined as the Fourier transform of the log of the signal spectrum.
Cepstrum coefficients are used as the test featuresin the clustering experiments because they are
commonly used in speech coding, speech synthesis, speech recognition and speaker recognition.
The test materials for these experiments consist of two hundred words recorded from one male
speaker. The speech is sampled at a rate of 16 kHz and 13-dimensional cepstrum coefficients
with pre-emphasis value 0.98 are computed over 20 ms-wide frames with a5 msframe shift. A
total of 20,030 analyzed frames are used in the VQ clustering experiments. Normally, this data
set sizeisused to train up to 1024 codewords. Here, it isused inthe VQ clustering experiments

for 8 codewords to 1024 codewords.

4.3 LBG Algorithm

All of the fast VQ clustering algorithms (Pan et al., 1994a; Pan et al., 1996¢) described in
this chapter are based on the LBG agorithm (Linde et al., 1980). This algorithm starts by
assigning all the training data vectors to a single cluster, and proceeds by binary splitting until
the desired number of clustersisachieved. After each splitting of the clustersthereisaniterative
procedure in which the cluster centroids are re-estimated and the data vectors are re-classified
until the average distortion between the centroids and their classified vectors converges. The
classification at each stage uses the full-search agorithm to find the nearest centroid to each

vector. The detail algorithm based on unknown distributionis as follows:

Step 1. Set m = 1. Calculate centroid C; = § Z].T:] X;, where T is the total number of data

Vectors.

Step 2: Divideeach centroid C; intotwo closevectors Cy;_; = Cix(1+8)and Cy; = Cix(1-19),
1 <1< m. Here b isasmal fixed perturbation scalar. Let m =2m. Setn =0, herenis

theiterative times.

Step 3: Find the nearest neighbour to each data vector. Put X; in the partitioned set P; if C; is

the nearest neighbour to X;.

85



Step 4: After obtaining the partitioned setsP = (P;; 1 < i < m), setn =n + 1. Calculate the

overall average distortion D, =1 3, 5 1 D(X{?, C;), where P; = {X{°, X§, ..., X{P}.
Step 5: Find centroidsof all disjoint partitioned setsP; by C; = - Y Xo.

Step 6: If (D1 — DL)/Dy > €, go to step 3; otherwise go to step 7. Here € is a small
distortion threshold.

Step 7: If m = N, then take the codebook C; as the final codebook; otherwise, go to step 2.

Here N isthe codebook size.

4.4 PreviousVector Candidate and Previous Partitioned Centre

In the VQ clustering procedure, speech data has the property that the classification result for the
present vector isusually the same asor closeto the classified result of the previousvector (Chen
& Pan, 1989). Moreover, most of the vectors which are re-estimated in a full-search actually
remain in the same partitioned set as for the previous re-estimation. With binary codeword
splitting, the most probable partition to which data vectors belong can be chosen from the
separated centres of the partitioned set. The previous vector candidate and previous partitioned
centre can be used as tentative matches in the VQ clustering algorithm. Fig. 4.1 illustrates the
relationship between the number of codewords and the probability that data vectors remain in
the same partitioned set after re-estimation in full-search. For the fixed data vectors, the more
codewords being generated, the larger isthe probability that the data vectors belong to the same
(previous) partitioned set. The probability isup to 0.949 for 1024 codewords. These resultsare

averages across the re-estimation and re-classification iterationswhen 6 = 0.01 and € = 0.005.

45 Codebook Reorder Method

The codebook reorder method (Pan, 1988) is to reorder the codewords so as to increase the
search efficiency. For speech encoding, it chooses the nearest codeword of the previous frame
as a tentative match to encode the present frame. From training data, it is possible to calculate

the probability of these codewords to be encoded and arrange these codewords in the order
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of decreasing probability. The codeword search is operated from the most probable codeword
to the least probable. It is simple and efficient to create a state table where these elements
are indices of codewords and arranged in the increasing order of distortion between the most
probable codeword and the other codewords. In the VQ clustering procedure, the previous
vector candidate or previous partitioned centre can be chosen as the most probable codeword
S0 as to create the state table. The computational complexity is O(N?log,N) using Heapsort
(Press et al., 1986) to establish the state table.

4.6 Fast Clustering Algorithms

4.6.1 APV-typeclustering algorithm

An efficient clustering algorithm must include two key elements, i.e., a good tentative match
and a powerful codeword elimination criterion. The previous vector candidate as the tentative
match with AEI and PDS to improve the conventional clustering algorithm is proposed. This
algorithmis called APV-type algorithm. It is described as follows.

step 1. Set m = 1. Calculate centroid C; = ‘?Z].T:] X;, where T is the total number of data

Vectors.

step 2: Divideeach centroid C; intotwo closevectorsC,;_y = Cyx(1+8) and Cy; = Cix(1-9),
1 <1< m. Here b isasmal fixed perturbation scalar. Let m =2m. Setn =0, herenis

theiterative times.

step 3: Compute the nearest neighbour for the first data vector X;. For data vector X;, use the
nearest neighbour of X;_; (previous vector candidate) as a tentative match and apply AEI
with a PDS to find the nearest neighbour to each data vector. Put X; in the partitioned set

P; if C; isthe nearest neighbour to X;.

step 4: After obtaining the partitioned sets P = (P;; 1 < i < m), st n =n + 1. Calculate the

overall average distortion D, =1 3, 5 I D(X{?, C;), where P; = {X{°, X§, ..., XD}

step 5: Find centroids of all disjoint partitioned sets P; by C; = - 3 1, X,

j=
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step 6: If (D_1—D.)/Dy > €,gotostep 3; otherwisegoto step 7. Here e isasmall distortion
threshold.

step 7: If m = N, then take the codebook C; as the final codebook; otherwise, go to step 2.

Here N isthe codebook size.

4.6.2 APC-type Clustering Algorithm

The previous vector candidate is a very efficient tentative match for word recognition (Chen
& Pan, 1989). It is not powerful compared with the previous partitioned centre in clustering
algorithm because some adjacent data vectors are uncorrelated. It is possible to modify this
clustering algorithm using the previous partitioned centre as a tentative match with AEIl and
PDS dimination criteria. Thisalgorithmisreferred to as APC-type algorithm and it is depicted

asfollows.

step 1. Set m = 1. Calculate centroid C; = ‘?Z].T:] X;, where T is the total number of data

Vectors.

step 2: Divideeach centroid C; intotwo closevectorsC,;_y = Cy+(1+8) and Cy; = Cix(1-9),
1 <1< m. Here b isasmal fixed perturbation scalar. Let m =2m. Setn =0, herenis

theiterative times.

step 3: For each data vector Xj, set D in = MIN(D(X;, C2i-1), D(Xj, C21)), C2i—y and Cy; are
split from C; associated to the partitioned set P; to which X; previously belonged. Choose

C,i_1 or Cy asthe previous partitioned centre which is the nearest neighbour to X;.

step 4: Use the previous partitioned centre as a tentative match and apply AEI with PDS to
find the nearest neighbour to each data vector. Put X; in the partitioned set P if C; isthe

nearest neighbour to X;.

step 5: After obtaining the partitioned sets P = (P;; 1 < i < m), set n =n + 1. Caculate the

overall average distortion D, =1 3, 5 1 D(X{?, C;), where P; = {X{°, X§, ..., X{P}.

step 6: Find centroids of all disjoint partitioned sets P; by C; = - Y X0
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step 7: If (Dn—1 — D,)/Dn > €, take C; as the previous partitioned centre for each X; € P;

and go to step 4; otherwise go to step 8. Here e isa small distortion threshold.

step 8: If m = N, then take the codebook C; as the final codebook; otherwise, go to step 2.

Here N isthe codebook size.

Fig. 4.2 shows the statistics for the elimination probability of APC-type using AEI criterion at
each feature dimension. The previous partitioned centre is used as the initial codeword in this
experiment. For 1024 codewords, 61.6% of impossible codeword matches will be eliminated
by using AEI at the first dimension and only 0.5% codewords cannot be eliminated using AEI

criterion.
4.6.3 APCH-type Clustering Algorithm

Thehypercube approach providesthetighter boundthan AEIfor s = 1. The APC-typeagorithm
can befurther improved by adding the hypercube approach to step 4, asan APCH-type algorithm.
Use the previous partitioned centre as a tentative match. Check Eqg. 3.5 to eliminate impossible
codeword match. Apply AEI to eliminate the codeword which cannot be eliminated using
hypercube approach. A PDS schemeisused for the codeword which cannot be eliminated using

hypercube approach and AEI criterion. The detail of thisagorithm is stated as follows:

step 1. Set m = 1. Calculate centroid C; = ‘?Z].T:] X;, where T is the total number of data

Vectors.

step 2: Divideeach centroid C; intotwo closevectorsC,;_y = Cyx(1+8) and Cy; = Cix(1-9),
1 <1< m. Here b isasmal fixed perturbation scalar. Let m =2m. Setn =0, herenis

theiterative times.

step 3: For each data vector Xj, set Din = MIN(D(X;, C2i-1), D(X;, C21)), C2i—q and C,; are
splitfrom C; associated to the partitioned set P; to which X; previously belonged. Choose

C,i_1 or Cy asthe previous partitioned centre which is the nearest neighbour to X;.

step 4: Use the previous partitioned centre as a tentative match and apply AEIL, hypercube

approach and PDS to find the nearest neighbour to each data vector. Put X; in the
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partitioned set P; if C; isthe nearest neighbour to X;.

step 5: After obtaining the partitioned sets P = (P;; 1 < i < m), set n =n + 1. Calculate the

overall average distortion D, = 2 Y, 5 7 D(X{?, Cy), where P; = {X, X9, ..., xP}.

step 6: Find centroids of all digjoint partitioned sets P; by C; = = 3 1) X{".

j=

step 7: If (Dn—1 — D,)/Dn > €, take C; as the previous partitioned centre for each X; € P;

and go to step 4; otherwise go to step 8. Here e isa small distortion threshold.

step 8: If m = N, then take the codebook C; as the final codebook; otherwise, go to step 2.

Here N isthe codebook size.

Fig. 4.3 shows the statistics for the elimination probability of APCH-type using the hypercube
approach at thefirst feature dimensionand AEI criterion at the other feature dimension. Thepre-
vious partitioned centre is used asthe initial codeword in this experiment. For 1024 codewords,
88.9% of impossible codeword matches will be eliminated by using the hypercube approach at
the first dimension and only 0.45% codewords cannot be eliminated using hypercube approach
and AEI criterion. For 8 codewords and 64 codewords, only 8.3% and 2.9% codewords cannot

be eliminated using hypercube approach and AE1 criterion.
4.6.4 |PC-type Clustering Algorithm

The hypercube approach and AEI criterion are specia cases of the improved AEI (IAEI)
criterion. Here, theimproved AEI criterion isadopted to increase the efficiency for the clustering
algorithmin step 4. Thisagorithmis referred to as |PC-type algorithm. By applying Eq. 3.45,
this criterion can be separated into several sections. For 13-dimensional cepstrum coefficients,
it is possible to separate the improved AEI criterion into four sections. These four sections are
to set h=1 to check the first dimension-difference, h=4 for the sum from the first dimension-
difference to the fourth, h=9 for the sum from the first dimension-difference to the ninth and
h=13 for the sum of all dimension-differences. A PDS scheme isused for the codeword which

cannot be eliminated using theimproved AEI criterion. The detail algorithmisstated asfollows:
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step 10 Set m = 1. Calculate centroid C; = = Z].T:] X;, where T is the total number of data

Vectors.

step 2: Divideeach centroid C; intotwo closevectorsC,;_y = Cy+(1+8) and Cy; = Cix(1-9),
1 <1< m. Here b isasmal fixed perturbation scalar. Let m =2m. Setn =0, herenis

theiterative times.

step 3: For each data vector Xj, set D in = MIN(D(X;, C2i-1), D(X;, C21)), C2i—y and Cy; are
split from C; associated to the partitioned set P; to which X; previously belonged. Choose

C,i_1 or Cy asthe previous partitioned centre which is the nearest neighbour to X;.

step 4: Use the previous partitioned centre as a tentative match and apply IAEI with PDS to
find the nearest neighbour to each data vector. Put X; in the partitioned set P if C; isthe

nearest neighbour to X;.

step 5: After obtaining the partitioned sets P = (P;; 1 < i < m), set n =n + 1. Calculate the

overall average distortion D, =1 3, 5 1 D(X{?, C;), where P; = {X{°, X§, ..., X{P}.
step 6: Find centroids of all disjoint partitioned sets P; by C; = - Y X0

step 7: If (Dn—1 — D,)/Dn > €, take C; as the previous partitioned centre for each X; € P;

and go to step 4; otherwise go to step 8. Here e isa small distortion threshold.

step 8: If m = N, then take the codebook C; as the final codebook; otherwise, go to step 2.

Here N isthe codebook size.

Fig. 4.4 shows the statistics for the elimination probability of IPC-type using IAEI criterion at
each feature dimension. The previous partitioned centre is used as the initial codeword in this
experiment. For 1024 codewords, 88.9% of impossible codeword matches will be eliminated
by using TAEI at the first dimension and only 0.38% codewords cannot be eliminated. For 8
codewords and 64 codewords, only 5.4% and 2.2% codewords cannot be eliminated using IAEI

criterion.
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4.6.5 TPC-type, ATPC-typeand TPCR-type Clustering Algorithms

Thetriangular inequality elimination (TIE) criteria can also be applied to step 4 of the clustering
algorithm. TPC-typeisthe clustering algorithm combining previous partitioned centre, TIE and
PDS. An ATPC-type agorithm is the addition of AEI to the TPC-type algorithm, i.e,, if the
codeword cannot be eliminated using TIE, then apply AEI and PDS. A TPCR-type agorithmis
the addition of acodebook reorder method to the TPC-type algorithm, i.e., reorder the codewords
inincreasing order of distortion between previous partitioned centre and these codewords before
applying TIE. Fig. 4.5 illustrates the elimination probability using TIE combined with previous
partitioned centrein VQ clustering procedure. For 1024 codewords, the elimination probability
is0.949.

4.7 Experimentsand Results

The test materials used in the VQ clustering experiments are described in the Section 4.2. To
verify these fast algorithms, the mathematical operations (multiplications, comparisons, and
additions) are used to calculate the computational efficiency. The experiments are carried out
by setting the small fixed perturbation scalar to 0.01 and the small distortion threshold to 0.005.
Twelve approaches are compared in the VQ clustering procedure. The conventional exhaustive
method is referred to as CVT-type. P-type and T-type are approaches using PDS and TIE in
codebook design. TP-type is the approach using TIE to eliminate unlikely codeword matches,
then applying PDS to the codeword search. TPC-type is the algorithm using the previous
partitioned centre as the most probable matching with TIE and PDS to reduce the clustering
time. TPCR-type isthe TPC-type with codebook reorder method. It is called an APC-type if
the previous partitioned centre is used as the tentative match with AEI and PDS to accelerate
the clustering speed. Using the previous vector candidate instead of the previous partitioned
centre in an APC-type is called the APV-type. The ATPC-type isan algorithm combining TIE,
AEI, PDS and the previous partitioned centre. The APCH-type isthe addition of the hypercube
approach to the APC-type. |PC-type isan algorithm combining the previous partitioned centre,

improved AEI and PDS. The combination of previous partitioned centre, hypercube approach
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and partial distortion search is referred to as the PCH-type.

The experimental results for 8 codewords to 1024 codewords are shownin Table 4.1, 4.2, 4.3,
4.4, 45, 4.6, 4.7 and 4.8. For ageneral processor architecture, the multiplication operation is
more expensive than the comparison operation and the addition operation. It is better to use an

I PC-type algorithm for large codebook size and a TPC-type algorithm or TPCR-type algorithm
for small codebook size. Table 4.1 to Table 4.8 also illustrate the number of total mathematical

operations. In terms of the total number of operations, TPC-type outperforms all of the above
algorithms. It needs extra computation time to generate the distortion table for TIE approach

and that is why the total number of multiplicationsin ATPC-type, TPC-type and TPCR-type
are larger than | PC-type, APC-type, APV-type, PCH-type and APCH-type for 1024 codewords.
The codebook reorder method is not very efficient in the VQ clustering algorithm owing to the
overhead of the sorting procedure. In small codebook size (such as 8 codewords), TPCR-type
isexcellent. It is not however superior compared with IPC-type, APCH-type, APC-type, APV-
type, ATPC-type and TPC-type for large codebook size. For other codebook sizes between 8
codewords and 1024 codewords, these fast VQ clustering algorithms are also very efficient in

computation.

The comparison of elimination probability of APC-type, APCH-type and |PC-type algorithms
for 16 codewords is shown in Fig. 4.6. For 16 codewords, the elimination probability of
APCH-type agorithm and APC-type algorithm are 0.85 and 0.37 at the first dimension. This
means that the hypercube approach is efficient. The elimination probability of the APCH-type
algorithm is the same as the | PC-type algorithm at the first feature dimension. At other feature
dimensions, the elimination probability of the |PC-type algorithmis higher than the APCH-type
algorithm. The IAEI criterion is superior to the AEI criterion with hypercube approach in the
VQ clustering algorithm. Fig. 4.7 and 4.8 illustrate the saving in the number of multiplications
a each iteration of |PC-type, PCH-type, TPC-type and ATPC-type algorithmsfor 128 and 1024
codewords. Fig.4.9and 4.10illustratethe saving in thetotal number of mathematical operations
a each iteration of |PC-type, PCH-type, TPC-type and ATPC-type algorithmsfor 128 and 1024
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codewords. The comparative efficiency of these algorithms are only influenced a little by the

number of iterations.

To sum up, the IPC-type algorithm, which is a combination of the previous partitioned centre,
the improved absolute error inequality criterion and the partial distortion search, is judged to
be the best VQ clustering algorithm approach for general processors. In contrast, the TPC-type
algorithm, which is a combination of the previous partitioned centre, the triangular inegquality
elimination and the partial distortion search isjudged to be the most suitable approach for DSP

processors.
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method | mul(x10%) | cmp(x10°) | add(x10°) | sum(x10°) | saving sum | saving mul
IPC 5.72 2.92 18.0 26.6 61.4% 73.5%
APCH 5.82 3.57 185 279 59.6 % 73.1%
APC 5.88 6.87 25.0 37.8 45.2 % 72.8 %
APV 5.90 8.53 26.1 40.5 41.3% 72.7%
ATPC 5.87 5.87 21.3 33.0 52.2% 72.8 %
PCH 572 1.94 15.8 235 65.9 % 73.5%
TPC 5.63 2.30 15.0 22.9 66.8 % 73.9%
TPCR 5.63 2.30 15.0 229 66.8 % 73.9%
TP 13.6 111 304 55.1 20.1% 37.0%
P 14.0 13.8 30.9 58.7 149 % 54.3%
T 16.2 2.31 35.7 54.2 21.4% 33.3%

CVvT 21.6 1.36 46.0 69.0 0% 0%
Table 4.1: Computational complexity of VQ clustering for 8 codewords

method | mul(x10°) | cmp(x10°) | add(x10%) | sum(x10°%) | saving sum | saving mul
IPC 8.59 6.98 30.0 45.6 71.1% 83.1%
APCH 8.77 8.45 313 48.5 69.3 % 82.7%
APC 8.87 15.2 45.0 69.1 56.3 % 82.5%
APV 9.41 18.4 47.8 75.6 52.2% 815%
ATPC 8.86 12.8 35.9 57.6 63.5 % 82.6 %
PCH 9.13 4.90 254 394 75.1 % 82.0%
TPC 8.91 5.59 23.0 375 76.3 % 825%
TPCR 8.91 5.60 23.0 375 76.3 % 82.5%
TP 28.1 25.8 60.0 114 27.8% 44.7 %
P 29.3 29.0 61.3 120 24.1% 42.3%
T 35.2 573 74.3 115 271.2% 30.7 %

CVvT 50.8 3.47 104 158 0% 0%

Table 4.2: Computational complexity of VQ clustering for 16 codewords
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method | mul(x10%) | cmp(x10°) | add(x10°) | sum(x10°) | saving sum | saving mul
IPC 12.5 17.2 52.1 818 78.8 % 90.1 %
APCH 12.8 20.6 55.8 89.2 76.9 % 89.8 %
APC 13.0 34.6 84.6 132 65.8 % 89.7 %
APV 14.7 40.9 91.8 147 61.9 % 88.3%
ATPC 13.0 284 61.6 103 73.3% 89.7 %
PCH 15.0 12.7 42.3 70.0 81.9% 88.1%
TPC 145 14.1 35.6 64.2 83.4% 88.5%
TPCR 144 14.1 35.6 64.1 834 % 88.6 %
TP 60.2 61.1 123 244 36.8 % 52.2%
P 63.8 63.6 127 254 34.2% 49.4 %
T 81.0 14.7 165 260.7 325% 35.7%

CvT 126 9.1 251 386 0% 0%

Table 4.3: Computational complexity of VQ clustering for 32 codewords

method | mul(x10°) | cmp(x10°) | add(x10%) | sum(x10°%) | saving sum | saving mul
IPC 15.9 32.0 78.3 126 82.9% 93.4%
APCH 16.3 379 85.4 140 81.0% 93.3%
APC 16.5 61.0 133 211 71.4% 93.2%
APV 19.7 71.8 147 239 67.6 % 91.9%
ATPC 16.7 48.6 88.3 154 79.1% 93.1%
PCH 21.6 24.7 62.2 109 85.2% 91.1%
TPC 20.3 26.4 48.0 94.7 87.2% 91.6 %
TPCR 20.2 26.8 48.0 95.0 87.1% 91.7%
TP 994 107 199 405 45.1% 58.9 %
P 107 107 207 421 43.0% 55.8 %
T 147 28.4 294 469 36.4 % 39.3%

CvT 242 17.9 478 738 0% 0%

Table 4.4: Computational complexity of VQ clustering for 64 codewords
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method | mul(x10%) | cmp(x10°) | add(x10°) | sum(x10°) | saving sum | saving mul
IPC 20.0 63.3 127 210 86.4 % 96.1 %
APCH 20.5 74.4 141 236 84.7 % 96.0 %
APC 20.7 115 225 361 76.6 % 95.9 %
APV 26.6 135 255 417 72.9% 94.8 %
ATPC 21.8 87.7 131 241 84.4% 95.7 %
PCH 33.2 51.3 99.2 184 88.1 % 93.5%
TPC 29.7 53.0 67.0 149.7 90.3% 94.2 %
TPCR 29.7 547 67.0 151.4 90.2 % 94.2 %
TP 163 188 318 669 56.6 % 68.0 %
P 181 181 337 699 54.6 % 64.4 %
T 287 59.3 565 911 40.8 % 43.6 %

CVvT 509 38.2 993 1540 0% 0%

Table 4.5: Computational complexity of VQ clustering for 128 codewords

method | mul(x10°) | cmp(x10°) | add(x10%) | sum(x10°%) | saving sum | saving mul
IPC 244 122 209 355 88.7 % 97.7 %
APCH 25.0 141 234 400 87.3% 97.6 %
APC 25.2 210 381 616 80.4 % 97.6 %
APV 35.2 249 441 752 76.1 % 96.6 %
ATPC 29.7 154 191 375 88.1% 97.1%
PCH 514 103 163 317 89.9 % 95.1 %
TPC 44.6 103 95.8 243 92.3% 95.7 %
TPCR 445 111 95.6 251 92.0% 95.7 %
TP 256 316 486 1058 66.3 % 75.4 %
P 295 295 526 1116 64.5 % 71.7%
T 546 120 1065 1731 44.9 % 47.6 %

CvT 1042 79.1 2021 3142 0% 0%

Table 4.6: Computational complexity of VQ clustering for 256 codewords
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method | mul(x10%) | cmp(x10°) | add(x10°) | sum(x10°) | saving sum | saving mul
IPC 285 218 335 582 90.2 % 98.6 %
APCH 29.2 250 376 655 89.0% 98.5%
APC 294 362 616 1007 83.1% 98.5%
APV 44.8 431 731 1207 79.7 % 97.7%
ATPC 45.8 256 275 577 90.3% 97.7%
PCH 77.6 190 265 533 91.0% 96.1 %
TPC 69.6 186 143 399 93.3% 96.5 %
TPCR 69.5 220 143 433 92.7 % 96.5 %
TP 385 503 713 1601 73.1% 80.5%
P 458 458 783 1699 714 % 76.8 %
T 967 223 1877 3067 48.4 % 51.1%

CvT 1976 151 3817 5944 0% 0%

Table 4.7: Computational complexity of VQ clustering for 512 codewords

method | mul(x10°) | cmp(x10°) | add(x10%) | sum(x10°%) | saving sum | saving mul
IPC 33.0 427 594 1054 91.5% 99.2 %
APCH 33.8 4381 663 1178 90.5 % 99.2 %
APC 34.1 680 1082 1796 85.5% 99.2 %
APV 58.6 812 1323 2194 82.2% 98.6 %
ATPC 105 463 465 1033 91.6 % 97.4%
PCH 127 384 479 990 92.0% 96.9 %
TPC 143 366 283 792 93.6 % 96.5 %
TPCR 143 539 282 964 92.2% 96.5 %
TP 645 871 1165 2681 78.3% 84.3%
P 777 777 1259 2813 77.2% 81.1%
T 1887 453 3649 5989 51.5% 5.1%

CVvT 4109 315 7922 12346 0% 0%

Table 4.8: Computational complexity of VQ clustering for 1024 codewords
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Chapter 5

Improved Algorithmsfor VQ
Codebook Design

5.1 Introduction

Data compression using vector quantization (VQ) has received great attention because of its
promising compression ratio and simple implemented structure. For the simplest VQ imple-
mentation, it separates the signal into several sections and compresses each section into one
vector. Each vector of the signal to be compressed is compared to the codevectors of a code-
book. The address of the codevector most similar to the signal vector is sent to the receiver. At
the receiver, the decoder accesses a codevector from an identical codebook, thus an approxima-
tion of the original signal is reconstructed. Compression is obtained by sending the index of the
particular codevector thereby requiring fewer bitsthan sending the signal vector. Thekey to VQ

data compression is a good codebook design.

Suppose that there are T training data vectors X;, j = 1,2,...,T and N codevectors C;,
i=1,2,...,N, are generated from these training data vectors. The training data vectors are
partitioned into N setsS; and C; isthe centroid of the training data vectors in the partitioned set
Si. The criterion of the VQ codebook design can be formulated as the following mathematical

form:
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T N
minimize fW,X,0)=> > wyD(X;, Cy), (5.1)

=1 i=1

subject to the following constraints:
N
> wy =1, 15T (5.2)

Wij =0 or 1, (53)
where X = {X;, X3, ..., X1}, X; = jth training data vector, C = {C;,Cy,...,Cn}, C = ith

centroid vector, W = aN x T matrix,

], |f XjeSi
Wij =
0, ifX; £S;

T = the total number of training data vectors, N = the number of codevectors D(Xj, C;) = the

distortion between the data vector X; and the codevector C;.

If the squared Euclidean distortion measure is applied, then the criterion of the VQ codebook

design can be expressed as
minimize fW, X, C) = Z Z Wi Z(x —cly?, 5.4
=1 1i=1
where k isthe number of dimensions, C; = {c], c7, ..., ¢} and X; = {x], %7, ..., x}'}. The matrix

W can be considered as the partitioned results of the training data vectors and from the matrix

W, the codevector can be obtained as

i |s | ZW” § )

where |S;| denotesthe number of training data vectorsin the partitioned set S; or the number of

non-zero wy;, j = 1,2, ..., T. The number of possible codebooks generated from these training
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datavectors (Anderberg, 1973) is

1 . N—1i N T

W;(_U i il (5.6)
If al the possible codebooks are tested, then a globally optimal codebook can be obtained.
Unfortunately, such computation is normally prohibitive, making any kind of exhaustive search
unredlistic even for the most powerful computers with relatively small values of codebook
size N and the number of training data vectors T. In order to overcome this difficulty, many
algorithms were applied to codebook design to produce sub-optimal codebook designs, such
as the K-means agorithm, ISODATA clustering algorithm, GLA algorithm, pairwise nearest
neighbour (PN N) algorithm, fuzzy C-means clustering algorithm, simulated annealing method,
stochastic relaxation approach, continuation method and deviation reduction algorithm which
will be described in the following subsections. New codebook design procedures using genetic
algorithms and genetic algorithms coupled with the stochastic relaxation approach will be
presented and experimental comparison of these algorithms with GLA will be presented in

section 5.3.
5.1.1 K-meansand ISODATA Clustering Algorithms

TheK-meansagorithm (MacQueen, 1967) isawell known iterative procedurefor the clustering
problem. It is also known as the C-means agorithm or basic ISODATA clustering agorithm.
This agorithm can also be applied to VQ codebook design, and the K-means algorithm can be

depicted as follows:

Step 1: Randomly select N training data vectors as the initial codevectors C;, i =1,2,...,N

from T training data vectors.

Step 2: For each training datavector Xj,j = 1,2, ..., T, assign X; to the partitioned set S; if

i= CLT‘gmiTLID(X]‘, Cl) (57)
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Step 3: Compute the centroid of the partitioned set (codevector) using

1

XjeSi

where |S;| denotes the number of training data vectorsin the partitioned set S;. If thereis

no changein the clustering centroids, then terminate this program; otherwise, go to step 2.

The ISODATA clustering agorithm (Ball & Hall, 1967) is a highly interactive version of the
K-means algorithm. This algorithm is characterized by the addition of several heuristics to
eliminate, aggregate and/or split clusters based on severa predefined parameters (Ball & Hall,

1967).
512 GLA Algorithm

Aniterative nonvariational techniquefor the design of scalar quantizer hasbeen reported (Lloyd,
1982). Linde, Buzo and Gray (LBG) extended Lloyd's (Linde et al., 1980) basic approach to
the general case of vector quantizer. It is called the LBG algorithm and it is also known as
the Generalised LIoyd algorithm (GLA). The GLA agorithm isawell known codebook design
algorithm and has been described in Section 4.3 where the basic idea of finding the centroids of
partitioned sets and the minimum distortion partitionsis the same as the K-means algorithm. In
the K-means algorithm, theinitial centroids are selected randomly from the training vectors and
the training vectors are added to the training procedure one at a time. The training procedure
terminates when the last vector is incorporated. In contrast in the GLA agorithm, the initial
centroids are generated from all of the training data by applying the splitting procedure and
all the training vectors are incorporated to the training procedure at each iteration. Normally,
the K-means algorithm is used to group data and the groups can change with time; the GLA

algorithm is applied to generate the centroids and the centroids cannot change with time.
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5.1.3 Pairwise Nearest Neighbour Algorithm

An agglomerative clustering approach is a process in which each training data is placed in
its own cluster and these atomic clusters are gradually merged into larger and larger clusters
until the desired objective is attained. A divisive clustering approach reverses the process
of agglomerative clustering approach by starting with all training data in one cluster and
subdividing into several smaller clusters. The GLA agorithm starts from one cluster and then
separates this cluster to two clusters, four clusters, and so on until N clusters are generated,
where N is the desired number of clusters or codebook size. Therefore the GLA algorithmisa
divisive clustering approach. The pairwise nearest neighbour (PNN) algorithm (Equitz, 1989;
Equitz, 1987) isan agglomerative clustering approach. PNN is actually identical to Ward's

hierarchical clustering method (Bottemiller, 1992; Ward, 1963) published in 1963.

The PNN agorithm beginswith a separate cluster for each vector in the training set and merges
together two clustersat atime until the desired number of codevectorsisachieved. At the start of
thisalgorithm, there are T training data vectors and each data vector correspondsto acodevector,
i.e., the codebook sizeis T. Then, these T clusters are converted to T — 1 clusters by merging
together into a single cluster the two closest clusters. This merging processis repeated until the
number of clustersis equal to the desired number of codevectors or the average distortion is

greater than the predefined maximum average distortion.

The pairwise nearest neighbour algorithm can be depicted as follows:

Step 1: Set the current number of codevectorsv = T and the codevector C; which belongsto
the partitioned set S;, isthe training data vector, 1 = 1,2, ..., T. T isthe tota number of

training data vectors.

Step 2: Calculate the pair distortion d(C;, C;) between the codevectors C; and C;, 1 < i < v,

1<j <
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niCi+n; G
i+

Step 3: Merge two partitioned sets S; and S; to S; and calculate new codevector C; =
if d(Ci,Cy) = {mind(C,,,, C), 1 < n<vn<m< v} S =¢C, S =S, ad
v =v — 1. Here, n; and n; are the number of training data vectors in the partitioned sets

Si and Sj.
Step 4: Calculate the average distortion for the partitioned sets.

Step 5: Terminate the program if v = N or the average distortion is greater than the predefined

maximum average distortion, where N is the desired codebook size.

The pairwise nearest neighbour algorithm is an agglomerative clustering approach in which
pairs of clusters are progressively merged together. The key to efficient execution of this
algorithmisto find the closest pairs of centroids quickly among all centroids. The obviousway
isto explicitly find each centroid's nearest neighbour, but this requires at least a log,T search
(Equitz, 1989) and leads to a complexity of O(TlogT) for each merge. In order to reduce the
computation complexity, a K-d tree structure (Bentley, 1975; Friedman et al., 1977) can be
applied to reduce the complexity of theentire PN N algorithmto O(Tlog,T) and itisindependent

of the number of codevectors.
5.1.4 Simulated Annealing Method

Simulated annealing (SA) (Kirkpatrick et al., 1983; Bohachevsky et al., 1986) is a random
search method which has been presented for optimization of NP-hard problems. Vechi and
Kirkpatrick applied a simulated annealing method to the optimization of a wiring problem
(Vecchi & Kirkpatrick, 1983). Gamal et al. aso used the method of simulated annealing to
construct good source codes, error-correcting codes and spherical codes (Gamal et al., 1987).
Cetin and Weerackody first proposed the method of ssimulated annealing in vector quantizer
design (Cetin & Weerackody, 1988). There are also many algorithms involving simulated
annealing for codebook design (Vaisey & Gersho, 1988; Flanagan et al., 1989; Lu & Morrell,

1991). Thebasic algorithm of simulated annealing for codebook design can be stated asfollows:
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Step 1: ThetrainingdataX;,j =1,2,..., T,ispartitionedintothepartitionedsetS;,i=1,2,...,N

randomly. Set n = 0 and calcul ate the codevector

Ci = X; .9
EPE )
where |S;| denotes the number of training data vectorsin the partitioned set S ;.

Step 2: The codebook is perturbed by randomly selecting a data vector and moving this data
vector from its current partitioned set to the different randomly selected partitioned set.

Calculate the new centroids.

Step 3: Thechangein distortion AD isdefined asthe distortion of current codebook minusthe

distortion of previous codebook. The perturbation is accepted if

AD

e o>, (5.10)
where r isarandom value generated uniformly on the interval [0,1].

Step 4: If thedistortion of the current codebook reaches the desired value or theiterative number
n reaches the predetermined value, then terminate the program; otherwise, set n =n + 1

and go to step 2.

This algorithm starts with an initial temperature T,. The temperature sequence Ty, T4, Ta,... are

positive numbers which is called an annealing schedule where

>

—
<
v
j)
v
N

(5.11)

and

lim T, =0. (5.12)

If the resulting codebook decreases the distortion, the movement of the data is accepted. If
the distortion is increased, it is accepted with the condition as in Eq. 5.10. Obvioudly, the

perturbation is accepted easily for the earlier temperature and it is difficult to be accepted at
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the final temperature. By accepting the perturbation for positive AD in some probability gives
the opportunity for jumping off the local optimum. The performance of the codebook design

depends on the annealing schedule.
5.1.5 Stochastic Relaxation Approach

In the previous subsection, the basic algorithm of simulated annealing in codebook design is
to perturb codevectors by moving the training data vector from its current partitioned set to a
different partitioned set. At each iteration of the simulated annealing algorithm, the perturbation
is performed if and only if Eq. 5.10 is satisfied. Thisis called a stochastic relaxation algorithm
(Zeger & Gersho, 1989; Zeger et al., 1992) if the perturbation is applied by adding some values
to the codevectors definitely for each iteration. The stochastic relaxation algorithm is depicted

asfollows:

Step 1: Select initial codevectors C{" randomly, 1 =1, 2, ..., N. Set iterative number m = 1 and

D():OO.

Step 2: Assign the data vector X; to partitioned set S; if d(Xi,Ci) < d(X,Cj), 1 #3,j =

1,2,...,N. Cdculate the overdl distortion D ,,,.
Step 3: If [P2=1=Pul < ¢ then terminate the program; otherwise, set m =m + 1.

Step 4: Compute the centroid for each partitioned set,

Ci = X; .
where |S;| denotes the number of training data vectorsin the partitioned set S ;.

Step 5: Perturb the codevector using
G = C +5:(Tw). (5.14)

Go to step 2.
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Si(T.) is a perturbation function in which the value of the temperature T.,, decreases with the
increase of the iterative number m. In previous work (Zeger & Gersho, 1989), Si(T.,) isa

uniform distribution with zero-mean and T, isthe range.
5.1.6 Fuzzy C-means Clustering Algorithm

The GLA agorithm, PNN algorithm, simulated annealing method and stochastic relaxation
approach in codebook design assign each training data vector to one and only one cluster, i.e.,
the training data vectors are partitioned into digoint sets. However, each training data vector
can be assigned a membership function indicating the degree of its “belongingness’ to each
cluster rather than assign it to only one cluster because some clusters are not compacted and
well separated (Dunn, 1974; Bezdek, 1973). Assumethat T and N are the number of training
data vectors and the number of codevectors. The object function of the fuzzy C-means (FCM)

clustering algorithm (Bezdek, 1973) isto

minimize

J(U,C)=> > wlDy, (5.15)

i=1 =1

subject to

N
=1

where D;; isthe squared Euclidean distortion between thetraining datavector X; and the centroid
C;, wy isthe value of membership for the training data vector X; belonging to the cluster j,

U ={uy}isT x N matrixand C = {Cy, C3, ..., Cn} isthe codebook.
The fundamental FCM clustering algorithm can be stated as follows:

Step 1: Set m = 1 and select the membership function L(1). Here m isthe current number of

iterations.
Step 2: Calculate C(m) by using
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T 2
"X
Ci(m) = Z;iu,z 1<j<N. (5.17)

2 i Ui

Step 3 If Din(m) =0, thenwi,(m+ 1) =1 and w;;(m + 1) = 0 for j # n; otherwise, calculate

U(m + 1) by using

1

Zn:] Din(m)
Step 4: Terminate the program and take C(m) = {C;(m), C,(m), ..., Cx(m)} asthefinal code-

book if max|uy(m) —w;(m+1)] <e, 1 <i<T,1 <j<N;otherwise, setm=m+1

and go to step 2. Here ¢ isasmall predefined value.
5.1.7 Path-following Approach

The path-following approach, also known as continuation method for vector quantizer (CMVQ)
design was proposed by (Chung et al., 1993). Suppose that there are T input vectors in the
trainingset S = {x,|p =1,2,..., T} and N codevectorsinthe codebook C = {C;|i=1,2,...,N},

where T > N. The sum of the squared errors within the partitioned setsis

D(S,0)=) > d(X;, C), (5.19)

p=1 X, €S

where d(X,,, C;) isthesquared Euclidean distortionbetween X, and C;, S; = {X, eS|d(X,, C;) <
d(X,,Cj),vi #j} and 1 < i < N. The centroid computation step of the GLA algorithm is

found by evaluating 2554 =0, i.e,

> Xy —1Si.Ci=0, (5.20)

XpeSi

where |S;| is the number of training vectors belonging to the partitioned set S;. If atraining set
SN consistsof only N vectors randomly chosen from S, by evaluating %LN“) = 0, thefollowing

equation is obtained:
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> X, —ISN.Ci =0, (5.21)

XpeSN
where SN = {X,eSNd(X,,Ci) < d(X,,C;)Vi # j}. The homotopy function (Stonick &

Alexander, 1992; Richter & DeCarlo, 1983) for VQ codebook design can be defined as

RC, )= =0 ) X, —[SN.CI+t[ ) X, —[Si].Cil. (5.22)

XpeSN Xp €Si

By setting Eq. 5.22 to zero, the iterative algorithm for the codevector is derived as

1
(Zi = X, +t X,). 2
BEEEEEIA AP M 62)
XpeSN Xpe{Si—SN}
The homotopy parameter t isaweighting factor in this centroid computation step. It can be set
to alinear homotopy parameter sequence {t,, = n.Atjn=0,1,...,2:}. If n =0, itistheinitial

step asin Eq. 5.21. If n = t, it isthe final result as in Eqg. 5.20. By adapting n from O to

n = 4., thefinal codevectors are generated.

5.1.8 Deviation Reduction Algorithm

The deviation reduction (DR) algorithm was proposed by (Chen et al., 1995). This algorithm
generates N codevectors from the training data X = {X;, Xy, ..., X1} of k-dimensional vectors
with T > N. Thesetraining dataare grouped into N clustersfirst using K-d treewith N buckets
which is generated from the greatest co-ordinate variance (Bentley, 1975). Each cluster is
represented by the number of datan; belonging to thiscluster and the centroid C; of thiscluster,
i=1,2,...,N. Theweighted distances defined in Eq. 5.24 are ca cul ated.

_nny|C - G

dij=——, 5.24
= (5.24)

wherei=1,2,...,Nandj=i+1,i+2,...,N.

The mean of these M2=1 weighted distances anong all clustersis
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- 2 N N
4= SN > ) di (5.25)

i=1 j=1
The difference between the d; ; and d indicates the deviation of the cluster C; and C; from the

mean. Based on the assumption that the small value of deviation leads to the better optimum,

the codevector C; can be generated iteratively by

Ci = Ci + (X(di_]' — a)(C] — Ci)y (526)

wherei=1,2,...,N,j =1,2,...,Nand « isa small positive constant. Eq. 5.26 is applied to

adapt codevector so as to reduce the deviation.

5.2 Codebook Design Using Genetic Algorithms

It has been shown (Lloyd, 1982) that two conditions are necessary but not sufficient for the

existence of an optimal minimum mean squared error (MSE) quantizer :
(2) the codewords should be the centroids of the partitions of the vector space.
(2) the centroid is the nearest neighbour (NN) for the data vectorsin the partitioned set.

These conditions have been applied to codebook design by Linde et a. in the generalized LIoyd
algorithm (GLA) (Linde et al., 1980). Since these conditions are necessary but not sufficient,
there is no guarantee that the resulting codebook is optimal. The generalized Lloyd agorithm
iswidely used in codebook generation for vector quantization. It is a descent algorithm in the
sense that at each iteration the average distortion is reduced. For thisreason, GLA tendsto get
trapped in local minima. The performance of the GLA is dependent on the number of minima

and on the choice of theinitial conditions.

Genetic algorithms refer to a model introduced and investigated by Holland (Holland, 1975)
and by students of Holland. They are computer search methods whose mechanics are based on

those of natural genetics. A genetic algorithmisany popul ation-based model that uses selection
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and recombination operators to generate new sample pointsin a search space. Thisevolutionary
procedure yields an effective search in a broad range of problems. Genetic algorithms (Gold-
berg, 1989; Davis, 1991) have been proven to be powerful methods in search, optimization
and machine learning. They encode a potential solution to a specific problem on a simple
chromosome-like data structure and apply recombination operators to these structures in order
to achieve optimization. Genetic agorithms have been used in VLSI layout, communication
network design, medical imaging, automatic control and machine learning, facility layout prob-

lem and the optimization of generalised assignment problem.

This chapter describes the GA-GLA1 and GA-GLAZ2 algorithms (Pan et al., 1995c; Pan et al.,
1996d) derived by applying genetic algorithms to codebook design to produce better optimum
VQ codebook vectors. Thefour main stepsinvolved in genetic algorithmsare evaluation, selec-
tion, crossover and mutation. Itisreferred to as GA-GLA1 algorithm if the evaluation, selection
and crossover are adopted in combination with GLA to produce a superior codebook design

algorithm.

The fitness of genetic algorithms can be represented by the mean squared error (MSE). In the
VQ operation, a chromosome is designated as the centroid of the cluster. The individual of the
population is the codebook. As shown in Fig. 5.1, the proposed GA-GLA1 agorithm consists

of the following steps:

Step 1: Initialization—Cal culate the central chromosome (centroid) G, from thetraining vectors
Xi (1=1,2,...,T). Select N chromosomes G; (j=1,2,...,N) for every member of the popula-
tion using random number generator. Here N is the codebook size, so that each codebook
consistsof N single-vector chromosomes. P setsof N chromosomes are generated in this

step, P isthe population size.

Step 2: Update — GLA isused to update N chromosomesfor every member of the population.
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Step 3: Evaluation — Fitness (or MISE) of every member of the population is evaluated in this

step.

Step 4: Selection — The survivors of the current population are decided from the surviva rate
P,. A random number generator is used to generate random numbers whose values are
between 0 and 1. If the random number is smaller than P, this codebook survives;
otherwise, it does not survive. The best fitness of the population always survives. Pairs of
parents are selected from these survivors and undergo a subsequent crossover operation

to produce the child chromosomes that form a new population in the next generation.

Step 5: Crossover — The chromosomesof each survivor are sorted in decreasing order according
to the squared error between the chromosome G; of the current population and the central
chromosome G,. Without sorting here, it is difficult to jump out of the local minima.
The 1-point or 2-point crossover technique (Goldberg, 1989) is used to produce the next

generation from the selected parents.

Step 6: Termination — Step 2 to step 5 are repeated until the predefined number of genera
tions have been reached. After termination, the optimal codebook is generated from N

chromosomes in the best member of the current population.

As shown in Fig. 5.2, the GA-GLAZ2 algorithm is similar to the GA-GLA1 agorithm except
that the stochastic relaxation scheme is applied to the mutation step in the codebook generation.
A random value is added to selected genes in the mutation step. This perturbation gives the
GA-GLAZ2 agorithm more opportunity to jump off the local optimum. The added value of the
perturbation can beanormal distribution, uniformdistribution or any other possibledistributions.

The proposed GA-GLA2 agorithm is stated as the following steps:

Step 1: Initialization—Calculate the central chromosome (centroid) G, from thetraining vectors
Xi (1=1,2,...,T). Select N chromosomes G; (j=1,2,...,N) for every member of the popula-

tion using random number generator. Here N is the codebook size, so that each codebook
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Figure 5.1: Flowchart of GA-GLA1 agorithm

consistsof N single-vector chromosomes. P setsof N chromosomes are generated in this

step, P isthe population size.

Step 2: Update — GLA isused to update N chromosomes for every member of the population.

Step 3: Evaluation — Fitness (or MSE) of every member of the population is evaluated in this
step.

Step 4: Selection — The survivors of the current population are decided from the survival rate
P,. A random number generator is used to generate random numbers whose values are

between 0 and 1. If the random number is smaller than P, this codebook survives;

otherwise, it does not survive. The best fitness of the population always survives. Pairs of
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parents are selected from these survivors and undergo a subsequent crossover operation

to produce the child chromosomes that form a new population in the next generation.

Step 5: Crossover — The chromosomesof each survivor are sorted in decreasing order according
to the squared error between the chromosome G; of the current population and the central
chromosome G,. The 1-point or 2-point crossover technique is used to produce the next

generation from the selected parents.

Step 6: Mutation — The genes (or features) in the chromosomes of the population are mutated
according to the mutationrate P, Here, thetotal number of mutationsis set to population
size P * number of chromosomes N * mutation rate P,,. When one chromosome is
selected to be mutated from random generation number, the new genes are generated from
the old genes by adding the random value 8,,. Here 1 < n < k and k is the number of
genes in one chromosome; —0.50.,n* < 6, < 0.50.n", 0, isthe standard deviation of
the nth dimension of the vector, t is the number of generations processed at present and

n<T.

Step 7: Termination — Step 2 to step 5 are repeated until the predefined number of genera-
tions have been reached. After termination, the optimal codebook is generated from N

chromosomes in the best member of the current popul ation.

Genetic algorithms have previously been applied to VQ codebook generation (Delport &
Koschorreck, 1995). Although they use a genetic algorithm, it differs from the GA-GLA1 and

GA-GLAZ2 algorithms considerably (Pan et al., 1996€). The main differences are asfollows.

Firstly, Delport and Koschorreck use the codebook indices of the training data as the coding
string, the length of the coding string isthusthe number of the training data pointsin thetraining
set. Inthe GA-GLA1 and GA-GLA?2 algorithms, the codebook vectors are used as the coding
string, the length of the coding string isthus equivalent to the number of codewords. Thismeans

that the length of the coding string is much shorter in the GA-GLA1 and GA-GLA2 agorithms.
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Figure 5.2: Flowchart of GA-GLA2 agorithm

no

Theoretically and practicaly, it is difficult to converge to a more optimal value if the length of

the coding string istoo long.

In addition, in the GA-GLA1 and GA-GL A2 agorithms, the coding strings of theinitia popul a-
tion can be assigned randomly from the training data, because it can be converged to an optimal
value easily under any initial conditions. Delport and Koschorreck use the binary splitting

method to derive the best initial population to improve their agorithm.

Finally, a sorting technique is used based on the central value of the training data to facilitate
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convergence to improved optima. Thisis unique to the GA-GLA1 and GA-GLA?2 agorithms.

Tosumup, asshownin Fig. 5.3 and Fig. 5.4, Delport and Koschorreck apply agenetic algorithm
to adapt the codebook index of pointsin the training data, whereas the genetic algorithms are

applied to GA-GLA1 and GA-GLA2 agorithmsto adapt the value of the codebook vector.

1 2 3 T<—— Number of Training Data

o e

Coding String

Codeword Index

Figure 5.3: Coding String of Delport’s Algorithm

1 2 3 N<=— Number of Codewords

K RN

Coding String

Vaue of Codebook Vector

Figure 5.4: Coding String of GA-GLA1 and GA-GLA2 Algorithms

5.3 Experimentsand Results

Cepstrum coefficients are used as the test features in the codebook generation experiments.
The test materials for these experiments consist of 9 words recorded from one male speaker.

The speech is sampled at arate of 16 kHz and 13-dimensional cepstrum coefficients (including

126



energy) are computed over 20 ms-wide frames with 5 ms frame shift. A total of 817 analyzed

frames are used in the codebook generation experiments.

Firstly, experiments are carried out to test the performance of GA-GLA1, GA-GLA2 and GLA
algorithms for 32 and 64 codewords. 1-point and 2-point crossover techniques are tested in
the experiments. The performance is measured in terms of mean squared error (M.SE) and is
averaged from 10 runs. The parameter values used for population size P, predefined number of
generations, the survival rate P, the mutation rate P,,, and n are 20, 100, 0.5, 0.1 and 0.9. As
shown in Table 5.1, 5.2, 5.3 and 5.4, in any run, the mean squared error of the GA-GLA1
algorithm and the GA-GLA?2 agorithm is smaller than the GLA algorithm. Table 5.5 and 5.6
show that the average distortions of 10 runs for codebooks generated by these new agorithms
are much better than those by the GLA algorithm. The 2-point crossover technique is better
than the 1-point crossover technique and the GA-GLA?2 agorithm is better than the GA-GLA1
algorithm in these experiments. The mean squared error decreases by more than 9% using these

new algorithmsinstead of the GLA algorithm.

Fig. 5.5 depicts the mean squared error (MSE) versus the population size for the GA-GLA1
algorithm using single point crossover and the number of codewords is 32. The most suitable
population size is 30 which can be determined from this experiment. The mean squared error
versus the number of generations for the GA-GLA1 algorithm using single point crossover and
50 individuals of population is shown in Fig. 5.6 for 32 codewords. This figure is generated
from the data of only one run. The mean squared error remains constant for several generations.
This means that the GLA algorithm is not useful in decreasing the mean squared error for the
best population and the genetic algorithm can not perform better result for the other individuals
of the population at the current generation. But after some generations, the genetic algorithm
will cause the other individuals of the population to generate better codewords to decrease the
mean squared error. The more generationsfor which thisalgorithm operates, the lower the mean

sguared error it generates but the running time will increase with the number of generations.
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Another experiment tests the performance of the GA-GLA1, GA-GLA2 algorithms and the
stochastic relaxation approach for generating 8 codewords. The single point crossover technique
isused in this experiment. The parameter values used for population size P, predefined number
of generations, the surviva rate P, the mutationrate P, andn are 20, 100, 0.5, 0.1 and 0.9. The
results of ten runs are shown in Table 5.7. Both the GA-GLA1 and GA-GLA?2 algorithms have
similar performance to the stochastic relaxation approach in this experiment. The mean squared

error of the global optimum is approximately 0.5832.

From the experimental results, the performance of the proposed GA-GLA1 agorithm and GA-
GLA2 algorithm are significantly better than for the GLA algorithm. These new algorithms can
be extended by using powerful mutation techniques, chromosome encoding techniques and the

other powerful selection and crossover techniques.

GLA 0.28522

Seed | GA-GLA1 1-point crossover | GA-GLA1 2-point crossover
1 0.2683 0.2602
2 0.2549 0.2585
3 0.2622 0.2583
4 0.2593 0.2562
5 0.2588 0.2584
6 0.2592 0.2586
7 0.2580 0.2593
8 0.2566 0.2584
9 0.2579 0.2566
10 0.2595 0.2573

Table 5.1: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 32 codewords
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GLA 0.28522

Seed | GA-GLAZ2 1-point crossover | GA-GLA2 2-point crossover
1 0.2609 0.2605
2 0.2574 0.2558
3 0.2643 0.2560
4 0.2560 0.2578
5 0.2566 0.2575
6 0.2559 0.2564
7 0.2595 0.2569
8 0.2598 0.2566
9 0.2572 0.2558
10 0.2568 0.2544

Table 5.2: Mean squared errors for ten runs of GA-GLA?2 algorithm and GLA for 32 codewords

GLA 0.187098

Seed | GA-GLA1 1-point crossover | GA-GLA1 2-point crossover
1 0.171316 0.168194
2 0.171781 0.171443
3 0.169128 0.167743
4 0.172415 0.168878
5 0.168015 0.167335
6 0.174766 0.169959
7 0.172679 0.172166
8 0.171191 0.170286
9 0.171656 0.170283
10 0.171595 0.171260

Table 5.3: Mean squared errors for ten runs of GA-GLA1 algorithm and GLA for 64 codewords
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GLA 0.187098

Seed | GA-GLA1 1-point crossover | GA-GLA1 2-point crossover
1 0.170653 0.168353
2 0.168776 0.169391
3 0.169161 0.168561
4 0.171857 0.168010
5 0.170882 0.165990
6 0.166766 0.168568
7 0.169233 0.168356
8 0.171477 0.171594
9 0.173121 0.168429
10 0.168244 0.172010

Table 5.4: Mean squared errors for ten runs of GA-GLA2 algorithm and GLA for 64 codewords

Algorithm MSE
GLA 0.28522
1-point crossover
GA-GLA1 | without mutation | 0.25947
1-point crossover
GA-GLA2 | withmutation | 0.25844
2-point crossover
GA-GLA1 | without mutation | 0.25817
2-point crossover
GA-GLA2 | withmutation | 0.25677

Table 5.5: Performance comparison of GA-GLA1, GA-GLA2 agorithms and GLA for 32
codewords

Algorithm MSE
GLA 0.187098
1-point crossover
GA-GLA1 | without mutation | 0.171554
1-point crossover
GA-GLA2 | withmutation | 0.170017
2-point crossover
GA-GLA1 | without mutation | 0.169755
2-point crossover
GA-GLA2 | withmutation | 0.168926

Table 5.6: Performance comparison of GA-GLA1, GA-GLA2 agorithms and GLA for 64
codewords
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Seed | stochasticrelaxation | GA-GLAL | GA-GLA2
1 0.5834 0.5838 0.5832
2 0.5876 0.5838 0.5832
3 0.5832 0.5832 0.5832
4 0.5832 0.5832 0.5832
5 0.5832 0.5832 0.5832
6 0.5832 0.5838 0.5835
7 0.5875 0.5832 0.5832
8 0.5832 0.5839 0.5832
9 0.5832 0.5832 0.5832

10 0.5832 0.5832 0.5832

Table 5.7: Mean squared errors for ten runs of GA-GLA1, GA-GLA?2 algorithmsand stochastic
relaxation approach for 8 codewords
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Figure 5.5: Mean squared error of GA-GLA1 algorithm for different population size
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Figure 5.6: Mean sguared error of GA-GLA1 algorithm for different number of generations
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Chapter 6

Improved Algorithmsfor Codebook
|ndex Assignment

6.1 Introduction

Vector quantization (VQ) (Gray, 1984) is very efficient for data compression of speech and
images where the binary indices of the optimally chosen codevectors are sent. As shown in
Fig. 6.1, a vector X = {x',x?,...,x*} consisting of k samples of information source in the
k-dimensional Euclidean space R* is sent to the vector quantizer. The k-dimensional vector
quantizer with the number of codevectors N is defined as follows by using the reproduction
alphabet consisting of N codevectors, C = {C;, C,, ..., Cy}, the partitioned set consisting of
subspaces of the k-dimensional Euclidean space R¥, S = {S;,S,,...,Sx}, and the mapping

function Q(-):

Q(X) = Ciy if XeSi. (61)

The sets C and the partitioned set S; satisfy

UY, Si = RX, (6.2)

and

The output of the vector quantizer istheindex i of the codevector C; which satisfies

134



k
i=argmin, Z(x1 —cp)’ (6.4)

1=1

Only the index i istransmitted over the channel to the receiver. The transmitting rate is defined
as

m =logo,N  Dbits/vector, (6.5)

and

r=m/k bits/sample. (6.6)

The performance of vector quantizer can be evaluated by the squared Euclidean distortion per

symbol given by

D, = % Z] Li P(X) ;(x1 — )ax, ©6.7)

where P(X) isthe probability density function of X.

The channel noise will induce channel errors in the communication. The effect of channel
errorsisto cause errorsin the received indices. Thus, distortionsare introduced in the decoding
step. Distortion due to an imperfect channel can be reduced by assigning suitable indices
to codevectors. If the number of codevectors is N, the possible combination of indices to

codevectorsis N!. Totest N! assignmentsis an NP-hard problem.
6.1.1 Simulated Annealingfor Optimization of Index Assignment

As described previously, the optimization of index assignment for vector quantizer is compu-
tationally intractable for large codebook size even if very powerful computer is used because
there exist N! possible ways to arrange the indices of codevectors for N codevectors. In order
to avoid the full search procedure, a simulated annealing method has been applied (Kirkpatrick
et al., 1983; Bohachevsky et al., 1986) to the codevector index assignment of vector quantizers
for noisy channels (Farvardin, 1990). The channel model is assumed to be a binary symmetric

channel with bit error probability e, i.e.,
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Channel Noise %é;
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Figure 6.1: Block diagram of VQ communication system for noisy channel

P(b(c,-)/b(ci)) — (1 _ E)m_H(b(ci)»b(cj))eH(b(Ci)»b(ci))’ (6.8)

where b(c), 1 = 1,2,...,N, is the index with m bit string of codevector C;, P(b(c;)/b(ci)),
i, =1,2,...,N, denote the probability that index b(c;) is received given theindex b(c;) is sent

and H(b(c:), b(c;)) denote the Hamming distance between b(c;) and b(c;).

In this previous work (Farvardin, 1990), the channel bit error probability € is assumed to be
sufficiently small (me < 1), then the error probability due to more than one bit error can be

ignored and the bit error probability of the channel model can be expressed as

€, H(b(c:), b(cy)) =1
P(b(c;)/b(ci)) =4 1 —me, H(b(cy), b(c;) =0 (6.9)
0, H(b(c;), b(cy)) > 1

Based on this channel model, the average distortion per source sample caused by the channel

noise for a given assignment of indices, b = (b(c), b(c), ..., b(cn)), can be expressed as
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D= Y 3 PleIP(b(e)/ble)d(c, ) (6.10)
i=1 j=1
%ZP(Q) Y deo), (6.11)
i=1 jrH(b(ci),b(cy))=1

and the ensemble average distortion is derived as

Des N—%ZP@Z Y dene) (6.12)
i=1

allb j'H(b(cl) b(c]))—l

_ k(N Z P(cs) Z d(ci, c;). (6.13)

The algorithm using simulated annealing for optimization of index assignment for vector quan-

tizer can be stated asfollows (Farvardin, 1990):

Step 1: Choose an initia state b of the indices for codevectors at random and set the initial

temperature T = T,.

Step 2: Randomly choose another state b’ (perturbation of state b) and calculate 6D, =

D (b)) — Des(b). If 8D,y < 0, replace b by b’; otherwise, replace b by b’ with

probability e =7 and go to step 3.

Step 3. If the number of average distortion drops exceeds a prescribed number or if too many

unsuccessful perturbations occur, go to step 4.

Step 4: Terminate the program if the temperature T is bel ow some prescribed freezing temper-
ature T; or a stable state is reached; otherwise, lower the temperature T and go to step

2.

Note that the simulated annealing approach in the optimization of codebook index assignment
will not affect the quantization accuracy in the error-free case because this method does not

change the value of codevectors.
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6.1.2 Pseudo-Gray Coding

Pseudo-Gray coding (Zeger & Gersho, 1990; Zeger & Gersho, 1987) provides a redundancy-
free error protection scheme for vector quantization of analogue signalswhen the binary indices
of the signal codevectors are sent on a discrete memoryless channel. The main idea of Pseudo-
Gray coding is to calculate the expected distortion due to the single bit error in the index of
codevectorsfor every index swapping and swap theindex pair that makesthelargest improvement

in distortion. The approach of Pseudo-Gray coding is stated as follows:

Step 1: Initialization — Assign indices to the codevectors randomly.

Step 2: Sorting — Sort the codevectors in the decreasing order of the expected distortion. Set

i=-1.

Step 3: Digtortion Reduction — Set i =1+ 1. Forj = i+ 1 to N, caculate the distortion
reduction after swapping theindex i and j. Let gain = the maximum distortion reduction

for swapping theindex i and j.
Step 4: Switching — If gain > 0, then switch index 1 and j and go to step 2.
Step 5: Termination—If 1 = N — 1, then terminate the program; otherwise, go to step 3.
6.1.3 Channel Optimized Vector Quantization

Animprovement of vector quanti zer performance against channel noise can beachieved by taking
the error characteristics of the transmission channel into account in the codebook design aswell
as in the quantization process. Hence, the expected error of the reconstructed codevector in the
decoder can be minimizedinstead of theirrelevant quantization error inthe encoder (Kumazawa
et al., 1984; Farvardin, 1990; Balss et al., 1995). If the squared Euclidean distortionis used, the
performance can be evaluated using Eq. 6.14 which is the expected squared error per samplein

the decoder provided that index b(c;) isreceived given that index b(c,) is sent.
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— Z Z P(b(c;)/b(cy)) L PX) D (x' - c))?dX, (6.14)
i =1

i=1 j=1

(_\.

where P(X) isthe probability density function of X.

In codebook generation for channel optimized vector quantization, the indices as well as the

codevectors are modified together. The index of the training data vector X isassigned using

i = argmlnlzP(b(c,)/b(cl))Z(x ch)?, (6.15)

j=1

and the codevector is modified using

I PO0()/0(e) ¥ x5, X
C XN P(o(e)/b(e)ISH

where |S;| isthe number of training data vectors belonging to the partitioned set S ;.

(6.16)

When the codevector C = {C;,C,, ..., Cn} is given, the partitioned set S; minimizing

Eq. 6.14 isgiven by

N k N k
S1=4{X| Y P(b(¢))/b(cy)) ) (x™—c) < D P(b(ey)/b(c)) Y (x™—¢"), for alliF 1}
- ™ - ™ 6.17)
When the codevectors C;,j = 1,2, ..., N, partitioned sets S;,j = 1, 2, ..., N and the training data
vectors X, t = 1,2, ..., T are given, the mean squared error per sample in the decoder can be

evaluated as follows:

D, = lT Z P(b(c;) /b(cl(t)))Z(x ch)?, (6.18)

where b(ci() istheindex of the bit string to which the tth training data vector X, belongs and

T isthetotal number of training data vectors.

In thetraining process, Eq. 6.16 and Eq. 6.17 are applied iteratively until atermination criterion

ismet.
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6.2 AverageDistortion

N codevectors C;, i = 1,2, ..., N, are assighed codevector indices with an m bit string b(c),
whereN = 2™, Thedistortion between codevector C; and C; isgiven by anon-negativedistortion
measure d(c;, ¢;). Usually, the Euclidean metric isused. Let P(b(c;)/b(ci)), 1,7 = 1,2,...N,
denote the probability that the index b(c;) is received given the index b(c;) issent. Assuming
random assignment of the codevector indicesb = (b(c;), b(c,), ..., b(cn)), theaverage distortion

for any possible bit errors caused by the channel noiseis given by

De= 1o Z Pe) Y 3 Plble)/bled)de e (6.19)

i= v j=1

We assumethat the channel isamemoryless binary symmetric channel with bit error probability
e. Thus, the error probability ise'(1 — ¢)™~', where L isthe number of bitsin which b(c;) and
b(c;) differ. Let H(b(c:), b(c;)) denote the Hamming distance between b(c;) and b(c;). The

average distortion can be written as

Z| - |

Z Plc) ) dlene)) Y e-emt (6.20)
i=1

i=1 1=1 B:H(b(ci).b(c)=1

m
There are N choices of b(c;), choices of b(c;) and (N — 2)! choices of the rest of b

L
given L. EqQ. 6.20 can be expressed as

1 m—1 m
Do 2P Z, e ’)Z SUSDARD e (6.21)
1 N m ! .
TN Z] P(CI)JZ] d(cl»C)Z L e'(1— o)™, (6.22)
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m

Since 1 = {E + (] — 5)}”‘ = Z{T:Lo 51(] _ E)m—l,
L
1T N m
De = N_1 Z P(ci) Z d(ci, ¢5)(1 — e?(1 — &)™) (6.23)
i=] =1 0
_1-(-9" ¢ .
= Ni_f Z] P(c:) ]Z] d(es, ¢)) (6.24)

After theindicesareassigned to the codevectors, the expectation of distortionfor thetransmission

of indicesb(c;),1=1,2,...,N, can be written as

D= Z] P(cy) i ed-om™" ) de,c) (6.25)

b(c;)eN(b(ci)

where N'(b(c;)) = {b(c;)el, H(b(c:), b(c;)) = 1}, isthe Lth neighbour set of b(c;).
6.3 Multiple Global Optima
Assume f(c;) = by = (bur, biz, ..., bim) is the function of index assignment. Here b;e{0, 1},

i=1,2,...,N,j=1,2 ...,m. If fisglobally optimal, then so is g defined by

g(ci) = (aﬂ y Ai2y eey aim)y (626)

where

@i = bipg) D Gip()s

q:;€{0,1},

p isapermutation of {1,2,...,m}.

There are 2™ possibilitiesfor q;,j = 1,2, ..., m, and m! possibilitiesfor p. Thus, at least m!N

global optimaexist for the problem of codebook index assignment. So, an N! search space can

141



be reduced to an ‘N;# search space. If the number of codevectorsis 8 and the globally optimal
assignment of the codevector indices b = (000,001,010,011,100,101,110,111), then there
are 8 possible combinationsfor qi;, j = 1,2, 3, i.e., H(b(c:), b(ci)) = H(b(ci) & s, b(ci) & s),
i=1,2,..,8,1=1,2,..,8 and se{000,001,010,011,100, 101,110,111} which is depicted
in Table 6.1. There are aso 6 possibilities of using a permutation in the bit string for each
possible combination in Table 6.1. Two examples are shown in Table 6.2 and Table 6.3. This
property can be applied to algorithms for codebook index assignment, for example, by setting
oneindex to one codevector at theinitial step, and holding this codevector index assignment until
the termination of these algorithms, i.e., reduce the search space from N! to (N — 1)! without

reducing the possibility of producing a better optimum.

globally optimal indices | 000 | 001 | 010 | 011 | 100 | 101 | 110 |111
¢ 000 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111
¢ 001 001 | 000 | 011 | 010 | 101 | 100 | 121 | 110
¢ 010 010 | 011 | 00O | 001 | 110 | 111 | 100 | 101
¢ 011 011 | 010 | 001 | OO0 | 111 | 110 | 101 | 100
¢ 100 100 | 101 | 110 | 111 | 00O | OO1 | 010 | 011
¢ 101 101 | 100 | 111 | 110 | 001 | OOO | O11 | 010
& 110 110 | 111 | 100 | 101 | 010 | 011 | 00O | OO1
G 111 111 | 110 | 101 | 100 | 011 | 010 | OO1 | OOO

Table 6.1: Example of 2° possibilitiesfor 5,7 =1,2,3,1=1,2,...,8

bit position globally optimal indices
123 000 | 100 | 010 | 110 | 001 | 101 | 011 | 111
132 000 | 010 | 100 | 110 {001 | 011 | 101 | 111
213 000 | 100 | 001 | 101 | 010 | 110 | 011 | 111
231 000 | 010 | 001 | 011 | 100 | 110 | 101 | 111
312 000 | 001 | 100 | 101 | 010 | 011 | 120 | 111
321 000 | 001 | 010 | 011 | 100 | 101 | 110 | 111

Table 6.2: Example of 3! possibilitiesfor the permutation of bit strings b=(000, 001, 010, 011,
100, 101, 110, 111)
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bit position globally optimal indices
123 100 | 000 | 110 | 010 | 101 | OO1 | 111 | 011
132 010 | 000 | 110 | 100 | 011 | 001 | 111 | 101
213 100 | 000 | 101 | OO1 | 110 | 010 | 111 | 011
231 010 | 000 | 011 | 001 | 110 | 100 | 111 | 101
312 001 | 000 | 101 | 100 | O11 | 010 | 111 | 110
321 001 | 000 | 011 | 010 | 101 | 100 | 111 | 110

Table 6.3: Example of 3! possibilitiesfor the permutation of bit strings b=(001, 000, 011, 010,
101, 100, 111, 110)

6.4 Algorithm

Genetic agorithms (Holland, 1975; Goldberg, 1989; Fang, 1994) are adaptive methods which
can be used in search and optimization problems. Here, a paralel genetic algorithm (Cohoon
et al., 1987; Pettey et al., 1987; Shonkwiler, 1993) is used to optimize the codevector index
assignment. The fitness isthe expectation of distortion asin Eq. 6.25. The chromosome is

theindex string. The proposed algorithm consists of the following steps (Pan et al., 1996a):

Step 1: Initialization — Randomly assign theindices (i.e. 0to N — 1) to every individual of the
population. A chromosome iscomposed of N indices. Separate the population into G
groups. G setsof P members are generated in this step, where P isthe population size for

each group. Without loss of generality, set G = 2™.

Step 2: Evaluation—Thefitness of every individual of the populationin each groupisevauated

in this step.

Step 3: Communication — Send the top best B individuals of the jth group to the gth groups
to substitute B individualsin each receiving group randomly for every R generations, i.e.,
receive some information from the other groups but keep the same population size. Here,

q=j®24,j=0,1,..,G-Tandi=0,1,...,n—1.

Step 4: Selection — Set the number of survivors within each group to P « P, where P, isthe

survival rate. For r = 1 to P * P, randomly choose M individuals from the group and
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select the best of these M individualsas asurvivor. This selection schemeisaso usedin
the Crossover step and Mutation step to select parents and candidates for crossover and

mutation.

Step 5: Crossover — The uniform order-based crossover technique (Davis, 1991) is used to
produce the next generation from the selected parents for each group. P * P, individuals
for each group are generated in this step, where P, is the crossover rate. Several gene
positions of the chromosome are chosen randomly and the order in which these genes
appear inthefirst parent isimposed on the second parent to produce offspring. The genes

in the other positions are the same as the first parent.

Step 6: Mutation—The genes (or indices) inthe chromosomes of the population are mutated
according to the mutation rate P.,. Here, the total number of mutations for each group
is set to group population size P * mutation rate P,,. The mutation is only operated by

exchanging two indices randomly in each group. Here, P, + P, + P, = 1.

Step 7: Termination — Step 2 to step 6 are repeated until the predefined fitness or the number
of generations have been reached. After termination, the optimal codevector indices are

generated from the best individual for all groups.
6.5 Experimental Results

Thetest materialsfor these experiments consisted of 200 words recorded from one mal e speaker.
The speech is sampled at arate of 16 kHz and 13-dimensional cepstrum coefficients (including
energy) are computed over 20 ms-wideframeswith 5 msframe shift. A total of 20,030 analyzed
frames are used to generate 8, 16, 32 and 64 codevectorsfor the experiments of codevector index

assignment.

Experimentthe were carried out to test the performance of the new algorithm and the average
distortion of the random assignment for 8, 16, 32 and 64 codevectors. The performance is

measured in terms of the average distortion using Eq. 6.25 compared with the average distortion
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of the random assignment for any bit error using Eq. 6.24. The inverse of the average distortion
is used as the fitness in this new algorithm to test the worst case of the random assignment.
The distribution of the codevector probability is set to a uniform distribution. The parameter
values used for the group population size P, the number of groups G, the predefined number
of generations, the survival rate P, the crossover rate P., the mutation rate P..,, the number of
individuals for selection M, the number of top best for communication B and the number of
generationsfor communication R are 50, 8, 500, 0.5, 0.4, 0.1, 3, 1 and 50 respectively. Table 6.4
shows the average distortion with 0.01 bit error probability for 10 runs. The new algorithm
reduces the distortion by more than 59 % compared with the random assignment and better than
75 % compared with the worst case for 64 codevectors and 0.01 bit error probability. For 0.1 bit
error probability, the average distortion for 10 runsis shown in Table 6.5. The new algorithm
reduces the distortion by more than 51 % compared with the random assignment and better than
66 % compared with the worst case for 64 codevectors and 0.1 bit error probability. The detail
resultsof thisalgorithmfor 0.01 and 0.1 bit error probability are depicted in Table 6.6, 6.7, 6.8,
6.9, 6.10, 6.11, 6.12and 6.13.

The experimental results of the parallel genetic agorithm in codebook index assignment for
different population sizes are shown in Fig. 6.2. The average distortion decreases with increase
inthe populationsize. Thisresult isreasonable because for moreindividuals, theparallel genetic
algorithmwill provide more possible solutions. All previousalgorithms (Marca& Jayant, 1987;
Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho, 1987) are
simulated on the assumption of single bit error. One of the contributionsin this chapter is the
derivation of the average distortion for any bit error and the application of the parallel genetic
algorithm to codebook index assignment for any bit error. Experimental results for the bit error

probability from 0.01 to 0.3 for 32 codewords are depicted in Fig. 6.3.

The spirit of the parallel genetic algorithm is not only to accelerate the speed of running

time, but also to produce improved index assignments. In order to reach these objectives, the
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communi cation between groups should be operated for somefixed generations. By sending some
top best individualsin the current group to the nei ghbouring groups, the problem of being trapped
in the local optimum due to convergence in an earlier generation can be avoided because some
promising individuals are migrated from the other groupsto replace some worse individualsin
the current group. Experiments have also been carried out to test performance in the separation
of the groups. The number of possible solutions that the parallel genetic algorithm provides
isP x G x Ny, where P, G and N, are the group population size, the number of groups and
the number of generations, respectively. The comparisonsin the performance of the separating
groups are based on the same total number of possiblesolutions, i.e., P x G x N 4 iskept constant.
Thetotal number of individualsof the population are separated into 8 groups, 4 groups, 2 groups
and 1 group (standard genetic agorithm) and the group population sizes are 50, 100, 200 and
400, respectively. The other parameter values used for the predefined number of generations
N, the bit error probability, the survival rate P, the crossover rate P., the mutation rate P,
the number of individualsfor selection M, the number of top best for communication B and the
number of generationsfor communication R are 500, 0.01, 0.5, 0.4, 0.1, 3, 1 and 50 respectively.
The experimental results for 32 codewords are shown in Fig. 6.4, the more groups are used, the

better result is generated.

From the performance noted in these experiments, the proposed algorithmis an effective means
for assigning codevector indicesfor noisy channels. The property of multiple global optima can
also be employed to reduce the search space for codevector index assignment of the memoryless
binary symmetric channel. Furthermore, the average distortion of random assignment for any

bit error is also introduced in this chapter.
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Number of codevectors | New algorithm | Random assignment | Worst case
8 0.05019 0.08091 0.11805
16 0.05518 0.10667 0.17194
32 0.05735 0.12900 0.21675
64 0.06370 0.15695 0.26712

Table 6.4: Performance (MSE) comparison of new algorithm, random assignment and worst

case (bit error rate: 0.01)

Number of codevectors | New algorithm | Random assignment | Worst case
8 0.49695 0.73824 1.00987
16 0.54219 0.93094 1.35419
32 0.56014 1.07788 157570
64 0.60435 1.25663 1.80073

Table 6.5: Performance (MSE) comparison of new algorithm, random assignment and worst

case (bit error rate: 0.1)

random 0.08091
Seed | Parallel Genetic Algorithm | Worst Case
1 0.50194 0.118052
2 0.50194 0.118052
3 0.50194 0.118052
4 0.50194 0.118052
5 0.50194 0.118052
6 0.50194 0.118052
7 0.50194 0.118052
8 0.50194 0.118052
9 0.50194 0.118052
10 0.50194 0.118052

Table 6.6: Mean squared errors for ten runs of the new agorithm and the worst case for 8

codewords (error bit rate: 0.01)
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random 0.10667
Seed | Parallel Genetic Algorithm | Worst Case
1 0.055510 0.171944
2 0.054983 0.171944
3 0.054983 0.171944
4 0.055472 0.171944
5 0.054983 0.171944
6 0.054983 0.171944
7 0.055472 0.171944
8 0.055472 0.171944
9 0.054983 0.171944
10 0.054983 0.171944

Table 6.7: Mean squared errors for ten runs of the new algorithm and the worst case for 16
codewords (error bit rate: 0.01)

random 0.12900
Seed | Parallel Genetic Algorithm | Worst Case
1 0.057117 0.216169
2 0.057323 0.216480
3 0.057218 0.216682
4 0.057010 0.216950
5 0.057371 0.217128
6 0.057040 0.216832
7 0.057020 0.217046
8 0.058332 0.217064
9 0.057118 0.216629
10 0.057901 0.216559

Table 6.8: Mean squared errors for ten runs of the new algorithm and the worst case for 32
codewords (error bit rate: 0.01)
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random 0.15695
Seed | Parallel Genetic Algorithm | Worst Case
1 0.063189 0.267354
2 0.064277 0.266953
3 0.064599 0.267502
4 0.063936 0.267080
5 0.064027 0.266898
6 0.063622 0.267707
7 0.063165 0.267259
8 0.063798 0.265945
9 0.063265 0.267465
10 0.063097 0.266987

Table 6.9: Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.01)

random 0.73824
Seed | Parallel Genetic Algorithm | Worst Case
1 0.496949 1.009870
2 0.496949 1.009870
3 0.496949 1.009870
4 0.496949 1.009870
5 0.496949 1.009870
6 0.496949 1.009870
7 0.496949 1.009870
8 0.496949 1.009870
9 0.496949 1.009870
10 0.496949 1.009870

Table 6.10: Mean sguared errors for ten runs of the new algorithm and the worst case for 8
codewords (error bit rate: 0.1)
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random 0.93094
Seed | Parallel Genetic Algorithm | Worst Case
1 0.540761 1.354326
2 0.544333 1.354326
3 0.540761 1.354326
4 0.540761 1.354326
5 0.540761 1.354326
6 0.544333 1.354326
7 0.544333 1.354326
8 0.544333 1.352996
9 0.540761 1.354326
10 0.540761 1.354326

Table 6.11: Mean squared errors for ten runs of the new algorithm and the worst case for 16
codewords (error bit rate: 0.1)

random 1.07788
Seed | Parallel Genetic Algorithm | Worst Case
1 0.561347 1.572520
2 0.558456 1.575521
3 0.559565 1577115
4 0.562493 1.575976
5 0.558365 1.573213
6 0.564351 1574178
7 0.560843 1.576259
8 0.557643 1.578823
9 0.561906 1.578223
10 0.556460 1.575162

Table 6.12: Mean squared errors for ten runs of the new algorithm and the worst case for 32
codewords (error bit rate: 0.1)
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random 1.25663
Seed | Parallel Genetic Algorithm | Worst Case
1 0.602386 1.799010
2 0.601041 1.798727
3 0.606692 1.797925
4 0.606469 1.804297
5 0.600100 1.801423
6 0.604978 1.802993
7 0.603606 1.802993
8 0.606954 1.801774
9 0.604795 1.798162
10 0.606492 1.799980

Table 6.13: Mean squared errors for ten runs of the new algorithm and the worst case for 64
codewords (error bit rate: 0.1)
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Figure 6.2: Average distortion of parallel genetic algorithm in codebook index assignment for
different population size
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Figure 6.3: Average distortion of parallel genetic algorithm in codebook index assignment for
different bit error probability
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Average Distortion of 10 Runs
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Figure 6.4: Average distortion of parallel genetic algorithm in codebook index assignment for
different number of groups
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Chapter 7

Summary and Conclusions

7.1 Summary

This thesis can be separated into four topics concerning fast VQ codeword search agorithms,
efficient VQ clustering algorithms, improved codebook design algorithms and improved algo-

rithmsin VQ codebook index assignment for noisy channels.

In Chapter 3, several fast codeword search agorithms are proposed, such as improved al-
gorithms combining the minimax method and the improved absolute error inequality (IAEI)
criterion; improved algorithms for partial distortion search; improved a gorithms for extended
partial distortion search; fast approximate search algorithm; and an improved algorithm for the

mean-distance-ordered search agorithm (MPS) for VQ image coding.

Several fast clustering algorithms for vector quantization are presented in Chapter 4. All these
approaches based on the LBG algorithm are compared. From the experiments, the IPC-type
clustering algorithmis confirmed to be the most suitable algorithm for the general processorsin
which the operation of the multiplication is more expensive than the operation of comparison
and the TPC-type clustering algorithm is recommended for use with DSP chips in which the

operation of comparison is computationally expensive.

In Chapter 5, genetic algorithms are applied to the generation of codevectors. The approach

of stochastic relaxation is aso combined with the genetic algorithms and the GLA algorithm to
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further enhance the search ability of the genetic algorithm in codebook design.

Chapter 6 describes the importance of codebook index assignment for noisy channels and the
problem that codebook index assignment is an NP-hard problem. In order to derive improved
assignment in the codebook index, a parallel genetic algorithm is demonstrated. Furthermore,
the ensemble average distortion with any bit error is derived and the property of multiple global

optimal in codebook index assignment is highlighted.

7.2 Conclusions

7.2.1 Efficient Codeword Search Algorithms

Vector quantization has been applied to data compression of speech and images, the coding of
speech and images, speech recognition and speech synthesis. The response time of codeword
search for vector quantization is a very important factor to be considered for real-time applica
tions. However, the complexity of vector quantization increases exponentially with the bit rate
per dimension and the number of dimensions. Thislimitsthe application of vector quantization.
In order to reduce the computation time, several efficient agorithmsfor VQ codeword search

have been demonstrated.

The bound for Minkowski metric isderived in thisthesis. By setting the parameters, this bound
can generate the hypercube approach, the partia distortion search (PDS) algorithm, the absolute
error inequality criterion (AEI) and the improved absolute error inequality criterion (IAEI) etc.
For the Minkowski metric of order n, this bound contributes the elimination criterion from L
metrictoL,, metric. Theboundfor Minkowski metricisal so extended to theboundsfor quadratic
metric by using the methods of Karhunen-Loéve transform (KLT) and Triangular Matrix. The
bounds for quadratic metric can be applied to the HMM with Gaussian mixture probability

density function.

By combining the improved absolute error inequality criterion with the minimax method, sev-

eral new algorithms are presented. Among these algorithms, the best algorithm will reduce the
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number of multiplicationsby more than 77% and slightly reduce the total number of mathemat-
ical operations for 1024 codewords compared with the minimax method. Since the operation
of multiplication is far more expensive than the operation of addition or comparison for the
general processors, experimental results confirm this new criterion. From many experiments
in the literature (Huang et al., 1992; Soleymani & Morgera, 1987b; Soleymani & Morgera,
1989), the absolute error inequality criterion (AEI) is the most efficient criterion in reducing
the number of multiplicationsfor a full search algorithm. By comparing the improved absolute
error inequality criterion (LAEI) with the absolute error inequality criterion (AEI) from theory,
the IAEI criterion provides atighter bound than AEI criterion. From experimentsin subsection
3.2.3, the TAEI criterion is shown to reduce the number of multiplications by more than 21%
and better than 3% for the total number of mathematical operations compared with the AEI

criterion.

The distortion computation of the quadratic metric dominates the computation timein searching
the nearest codeword for evaluating the log likelihood of Gaussian mixture distribution in the
hidden Markov model with the Gaussian mixture VQ codebook probability density function.
The quadratic metric is also popular in clustering algorithms. Unfortunately, the computational
complexity is high. That iswhy the bound for quadratic metric is developed in thisthesis. The
experiments in the codeword search of the quadratic metric reveal that the new algorithm using
the bound for quadratic metric with the partial distortion search is very efficient. The idea of
this algorithm is to apply the technique of metric transformation from the quadratic metric to
the Euclidean metric. Each input data vector can be transformed from the quadratic metric to
the Euclidean metric first, then apply the bound for quadratic metric with the partial distortion
search to eliminate impossible codeword matching. As shown in section 3.7, in comparing
the new algorithm with the conventional method, the new algorithm will reduce the number of
multiplications and the total number of mathematical operations by more than 98 % and 94 %,

respectively.
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There are two key elements in the design of efficient codeword search algorithms, i.e., an
efficient tentative match approach and a powerful elimination criterion. The tentative match
approach isused to derive the nearest codeword as soon as possible and the powerful elimination
criterion isused to eliminate impossible codeword matching to avoid the full computation of the
distortion between the codeword and the data vector. One of the most efficient tentative match
approaches in image coding is to use the codeword with the most similar sum of componentsto

the data vector as the most possible candidate. In applying this tentative match approach to the
mean-distance-ordered search algorithm (MPS) (Ra & Kim, 1993), a powerful algorithm was
reported by Ra and Kim. By extending the TAEI criterion, an even more powerful criterion is
obtained. This criterion is the generalised form of the inequality in the mean-distance-ordered
search agorithm (MPS). A new and improved algorithm is obtained by modifying the sum
of components to a partial sum of components as the tentative match approach and applying
the generalised criterion. This algorithm is an improved version of the mean-distance-ordered
search algorithm (M.PS) and this novel algorithm can be called the improved mean-distance-
ordered search algorithm (IMPS). From experiments, without applying partial distortion search
algorithmin the IMPS agorithm and the MPS algorithm, the IMPS agorithm will reduce the
computation time by more than 43% compared with the MPS agorithm. By applying the partial

distortion search algorithm both in the IMPS algorithm and the MPS agorithm, the IMPS

algorithm will reduce the number of multiplicationsby more than 27% and also reduce the total

number of mathematical operations about 15% for 1024 codewords.

Normally, the partial distortion search algorithm (PDS) is used at the last stage of the efficient
codeword search algorithmsbecause no algorithm can eliminateall impossiblecodeword match-
ing and the rest of the codewords which cannot be eliminated using some powerful criteria, can
be further eliminated using the partial distortion search algorithm. The partial distortion search
algorithmisvery suitablefor general processorsin which the operation of multiplicationismore
expensive than the operation of comparison. In order to enhance the performance of the PDS

algorithm to be suitable for any processor, the cost ratio of the comparison computation time
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to dimension-distortion computation time is considered, and an improved PDS agorithm and
an improved DPPDS algorithm are proposed. If the computation time of the comparison is
neglected compared with that of multiplication, the cost ratio will be nearly 0, then the compu-
tation time of the improved DPPDS agorithm will be the same as the PDS agorithm. If the
cost ratio is 1.0, then theimproved DPPD S agorithm will reduce the computation time by more

than 27% in comparison with the PDS algorithm.

As described in section 3.4, the extended partial distortion search (EPDS) agorithm is the
optimal version of PDS algorithm for considering the number of multiplications needed. The
EPDS algorithm is very suitable for computer architectures in which the complexity of com-
parisonsis negligible with respect to that of the multiplications. EPDS algorithmiis less suited
to some DSP processors in which comparisons are computationally expensive. In order to
evaluate and enhance the performance of EPDS agorithm, the cost ratio of the sorting time
to dimension-distortion computation time is introduced and the improved EPDS algorithm is
proposed. Especially, the optimal inserting point of the sorting and the performance of EPDS
and improved EPDS are derived in theory. The improved EPDS algorithm can be applied to
dimension-distortion computation for codeword search and the frame-distortion computation for

word recognition.

A fast agorithm for approximate codeword search is also presented. Based on the average dis-
tortion needed, arate can be selected. For example, the number of multiplicationsand the total
number of operations will be reduced by more than 80 % and 11 % with only 0.6 % increased

distortion for 8 codewords if the selected rate is 1.1 by comparing with the minimax method.
7.2.2 Fast VQ Generation Algorithms

In the efficient algorithms of codebook generation, several fast clustering approaches based
on LBG agorithm are proposed and compared. Among these approaches, using the previous
partitioned centre as the tentative match with improved AEI and PDS which is called the IPC-

type clustering algorithm is the most suitable approach for computer architectures in which the
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complexity of comparisons is negligible with respect to that of multiplications. For processor
architectures such as those based on the Harvard architecture in which comparisons are com-
putationally expensive, the combination of the previous partitioned centre, triangular inequality
elimination (TIE) and PDS which is called a TPC-type clustering algorithm outperforms the

other algorithms.
7.2.3 Improved VQ Codebook Design Algorithms

The performance of vector quantization depends on the quality of the codevectors and the exis-
tence of aglobally optimal algorithmto generate the codevectors. Up to now, no efficient method
hasbeen discovered to generate globally optimal codevectors. Although several algorithmswere
proposed (Ball & Hall, 1967; Linde et al., 1980; Equitz, 1989; Cetin & Weerackody, 1988;
Zeger et al., 1992; Chung et al., 1993; Chen et al., 1995) for the design of the codebook, none of
these has proven to be globally optimal. In thisthesis, genetic algorithmsare combined with the
GLA agorithm to produce a more optimal agorithm when compared with the GLA agorithm.
The approach of stochastic relaxation is also inserted to the mutation of genetic algorithmsto
further improvethisnovel algorithm. The mainidea of these algorithmsisto apply the powerful
search ability of genetic algorithms to adapt the value of codevectors. For 32 or 64 codewords,
the novel algorithms reduce the mean square error by more than 9% comparing with the GLA

algorithm.
7.24 New Discoveries of Codebook Index Assignment

Vector quantization isvery efficient for datacompression of speech and imageswhere the binary
indices of the optimally chosen codevectors are sent. Vector quantization as the central data
reduction scheme is however highly sensitive to channel errors. The effect of channel errors
isto cause errors in the received indices. A parallel genetic algorithm is applied to assign the
codevector indicesfor noisy channelsso asto minimizethedistortiondueto bit errors. A paralel
genetic algorithm is a genetic a gorithm running on many small subpopulations simultaneously

with an occasional identification and exchange of useful information among subpopulations.
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The purpose of applying the parallel genetic algorithm in VQ codebook index assignment is not
only to use the powerful technique of parallel processors to accel erate the search speed but also
adistributed formulation is devel oped to generate better solutionswith lesswork. Experimental
results show that applying aparallel genetic algorithm to the optimization of VQ codebook index
assignment will reduce the distortions by more than 59% compared with the random assignment
and better than 75% compared with the worst case for 64 codevectors and 0.01 bit error rate.
The novel property of multiple global optimahas been reported. Using the property of multiple
global optima, the complexity of computation can be reduced. All the algorithms (Marca &
Jayant, 1987; Vaisey & Gersho, 1988; Farvardin, 1990; Zeger & Gersho, 1990; Zeger & Gersho,
1987) are simulated based on the assumption of single bit error, a condition which isnot aways
true for real applications. The average distortion of the memoryless binary symmetric channel

for any bit error in the assignment of codebook indicesis also introduced in thisthesis.

7.3 FutureWork

7.3.1 Quadratic Metric

The bound for quadratic metric not only can be used in HMM-based recognition, but it can
also be applied to any codeword search in which the distortion measure is quadratic. In speech
recognition systemsbased on the semi-continuoushidden Markov model, the output probabilities
are evaluated as
N
bi(x) = ) cy®(x, i, Zy),
j=1

where ®(x, 1, Xy;) are often Gaussians and c;; are the mixture coefficients.

In the most practical implementations, the above summation is extended only to the L most
likely Gaussians in the mixture. Thus, the bounds for the quadratic metric can be modified to

the search of the L best likely Gaussians in the mixture for a given input data vector X.

The bounds for the quadratic metric are derived from the bound for the Minkowski metric using
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methods of metric transformation. Thiswork can thus be extended to investigate other methods
of metric transformation and to extend the bound for Minkowski metric to other distortion

measures in addition to the quadratic metric.
7.3.2 Vector Quantization of mages

The generalised form of the inequality in the mean-distance-ordered search algorithm (MPS)
has been presented. In the proposed new algorithm, each codevector is separated into two
sub-vectors only. By using this generalised form, each codevector can be separated into more
than two sub-vectors and each sub-vector can be the composition of any components in the
codevector. It may be also possible to find the optimal separation of these vector components
in theory so that it is the most efficient in the codeword search. In addition, if the sums of
the components for the subvectors are calculated first and these values are sorted in increasing
order including the indices of codevectors, then the proposed new algorithm can be modified as

follows:

Step 1: FCode_sum, = Z;‘:/]z c),SCode_sum, = Z;‘:%H ¢ and TCode_sum; = FCode_sum;+
SCode_sum; are calculated for each codeword, i =1, 2, ..., N, N isthe number of code-

words. A sorting list is computed according to the increasing order of the TCode sum;.
k/2

Step 2. FDatasum =3 7 x/, SData_sum = Z;‘:%H x'and TData_sum = FData_sum+

SData_sum are caculated.
Step 3: Calculatethetentative matching codewordiusing argMin;|TData_sum—TCode_sumy|.

Step 4: Calculate the squared Euclidean distortion D ...;, for the tentative matching codeword.
Set 1 to be the nearest uncalculated codeword to the tentative matching codeword in the

sorting list.

Step 5: Check the termination of this program. Test Eq. 3.71 for the neighbour codewordsin a

back-and-forth manner asin paper (Ra & Kim, 1993), if it is satisfied, delete impossible
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codeword matching, set 1 to bethe nearest uncal cul ated codeword to the tentative matching

codeword in the sorting list and goto step 5; Otherwise, goto next step.

Step 6: Test [FData_sum — FCode_sumy| > \/‘E‘Dj or |SData_sum — SCode_sum,| >
\/ng for the neighbour codewords in a back-and-forth manner as in paper (Ra &
Kim, 1993), if it is satisfied, then eliminate impossible codeword matching; otherwise use
the TAEI with PDS to the codeword search and update the D ,..;,. Set 1 to be the nearest
uncal culated codeword to the tentative matching codeword in the sorting list and goto step

5.
7.3.3 Inequality for Codeword Search

Givencodewords C; = {c};1 <j < k}, 1 <1< N, training datavectors Y, = {y); 1 <j < k},
1 < p < T and test data vector X = {x/;1 < j < k}, from the training data vectors and

codewords, compute

maxjle} - yj|

P R F
Zj:] (ci — yp)?

A1) = max,

7.1

and

B(i) = min, (7.2)

where §; and 6, are small scalar valuesand 1 < i < N. For atest vector X, use the minimax

method as tentative match and compute

n = argmin;max;|c] — x| (7.3)
If
O A@ o
max; C{ — X]| > %mGX”CL - x’ s (74)
then
k ) k
D =¥ =) (ch-x) (7.5)
i=1

j=1
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Eq. 7.4 and 7.5 can be proved asfollows:

Assuming that the training data set is sufficiently representative of the test dta so that the ratio

max;|c] — x|/ Y, (c] — x))? falls within the range of values max;|c] — i/ 3 =, (c] — y})?

observed for thetraining vectorsfor each i. From Eq. 7.1 and Eq. 7.2, with the above assumption,

the following two equations are obtained.

max;|c) — x|

Al > :
©= Y ii(c] — %)
and
max;|c) — x|
B(n) — k ] \2
Zj:] (C"'L - ])
Given

. . A A :
max;|c; — x| > —nmax,-|c’ - x| = —nmax,-|c’ -

by substituting Eq. 7.7 into Eq. 7.8, Eq. 7.9 is obtained.

k
max;|c) — x| > A(l) Z(ciL — X%

j=1

Eq. 7.6 can be rewritten as

k
A(l) Z(c{ —x))? > max;|c] — x]|.
j=1

(7.6)

(7.7)

(7.8)

(7.9)

(7.10)

According to Eq. 7.9 and Eq. 7.10, Eq. 7.5 is obtained and the proof is completed. Eq. 7.4 and

7.5 might be useful in the codeword search. Thisinequality could combine with the other fast

codeword search algorithms. Note that Eq. 7.1 and Eq. 7.2 can be changed to Eq. 7.11 and

Eq. 7.12 or some other mathematical forms without having influence on the existence of this

inequality, in other words, thisinequality can be extended to other distortion measures.

max;le] - y}|

\/ Z;(:] (Cl —y})?

A1) = max, + 9.
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max;|c] —y’
B(i) = min, —m¢ Vsl

— — — b). (7.12)
Zj:] (ci —yp)?

7.3.4 Codebook Design

Inthe GA-GLA1 agorithm and the GA-GL A2 algorithm, theinitial individualsof the population
are obtained from a random number generator. If the K-means algorithmis used to generate the
initial population, the result might be superior. In the codebook design, the average distortion
will be high if the centres of two clusters are very near or too many training data vectors in
the same cluster, i.e., the average distortion within one cluster is over some threshold. If two
clusters centres are very near, it is better to merge these two clusters together. If there are too
many training data vectors in the same cluster, it is better to split this cluster into two clusters.
These properties could be combined with the GA-GLA1 agorithm and GA-GLA2 algorithm, the
stochastic relaxation approach and the simulated annealing method to create further improved

codebook design methods.
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